Feynman diagrams, operator formalism and conformal field theory.

A. P. Isaev ${ }^{1}$

${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna; Theor. Phys. Chair, Faculty of Physics, Moscow State University

In collaboration with S.Derkachov and L.Shumilov (St.Petersburg) Phys.Lett. B 830 (2022) 137150, JHEP 06 (2023) 059.

RDP Workshop on Mathematical Physics,
A. Alikhanian National Science Laboratory, 19-21 August 2023

План

(1) Introduction. Zig-zag diagrams for $\phi_{D=4}^{4}$ and zig-zag conjecture
(2) Operator formalism for massless diagrams
(3) Graph building operators (GBO)

4 Conformal triangles as eigenfunctions for GBO. Orthogonality condition
(5) Zig-zag contributions into 2,4-point correlation functions for ϕ^{4}.
(6) Proof of zig-zag conjecture
(7) Why CFT? R-matrix and Lipatov's model of HE asymptotics of QCD
(8) Conclusion

The 4-dimensional ϕ^{4} field theory (and its multicomponent generalizations) serves the Brout-Englert-Higgs mechanism and thus is an essential part of the Standard Model of particle physics. It was shown by explicit evaluation (in MS scheme) of the Gell-Mann-Low β-function in $\phi_{D=4}^{4}$ theory that special Feynman diagrams - so-called zig-zag diagrams (in fact the residue $\operatorname{Res}_{\epsilon}=Z(M+1)$ of the corresponding 4-point perturbative massless integral)

where

$$
x_{1} \not \beta x_{2}=\frac{1}{\left(x_{1}-x_{2}\right)^{2 \beta}}, \quad x_{i}, y_{i} \in \mathbb{R}^{D}, \quad \bullet=\int d^{D} x, \quad D=4-2 \epsilon,
$$

give $44 \%, 46 \%$ and 47% of numerical contributions, respectively, to the 3, 4 and 5 loop orders of β [D.J. Broadhurst and D. Kreimer (1995)].

One can show that $Z(M+1)((M+1)$-loop contribution to the β-function $)$ is also given by the integral for M-loop 2-point zig-zag diagrams (ZZD):

and it has the general form for $D=4$:

$$
\begin{equation*}
G_{2}(x, y)=\frac{\pi^{2 M}}{(x-y)^{2}} Z(M+1), \tag{1}
\end{equation*}
$$

where $\pi^{2 M}$ is the normalization factor, $x, y \in \mathbb{R}^{4}$ and $Z(M+1)$ is the same constant that gives $(M+1)$-loop order contribution to the β-function in the $\phi_{D=4}^{4}$ theory.
History. The first $Z(3)=6 \zeta_{3} \sim \bowtie$ and $Z(4)=20 \zeta_{5} \sim \Delta$ in (1) were analytically evaluated by [K.G.Chetyrkin, A.L.Kataev, F.V.Tkachov, 1980$]^{1}$ and [K.G.Chetyrkin, F.V.Tkachov, 1981], respectively. The constant $Z(5)=\frac{441}{8} \zeta_{7}$ of the ZZD with 4 loops Δ was calculated by D.Kazakov in 1983 . The 5 loop ZZD $\triangle \nabla$ contribution $Z(6)=168 \zeta_{9}$ to the β-function (in 6-loop order) was found by D.Broadhurst in 1985. Here $\zeta_{k}:=\sum_{n \geq 1} 1 / n^{k}$.
${ }^{1}$ The "two-loop fish diagram" was firstly evaluated in [E.De Rafael, J.L.Rosner, 1974]

Then D.Broadhurst and D.Kreimer in $\underline{1995}$ evaluated $Z(M+1)$ numerically up to $(M+1)=10$ loops, and based on these data they formulated a remarkable conjecture that the constant $Z(M+1)$ is given by the sign alternating sum

$$
\begin{align*}
& Z(M+1)=4 C_{M} \sum_{n=1}^{\infty} \frac{(-1)^{(n-1)(M+1)}}{n^{2 M-1}}= \\
& =\left\{\begin{array}{l}
4 C_{M} \zeta_{2 M-1}, \text { for } M=2 N+1 ; \\
4 C_{M}\left(1-2^{2(1-M)}\right) \zeta_{2 M-1}, \text { for } M=2 N ;
\end{array} \quad \zeta_{k}=\sum_{n>1} \frac{1}{n^{k}},\right. \tag{2}
\end{align*}
$$

where M is the number of loops in ZZDs and $C_{M}=\frac{(2 M)!}{(M+1)!M!}$ is the Catalan number. Finally, the very nontrivial proof of the BroadhurstKreimer conjecture was found by [F.Brown and O.Schnetz in 2013,2015; based on J.M. Drummond (2012)].

In this report, by using methods of D-dimensional CFT, the concise integral presentations for 4-point and 2-point zig-zag Feynman graphs are deduced. It gives a possibility to compute exactly a special class of 2- and 4-point Feynman diagrams (ZZDs for any M) in ϕ_{D}^{4} theory. In particular we find new rather simple proof of the Broadhurst-Kreimes conjecture,

Operator formalism for massless diagrams.

Let $\left\{\hat{q}_{a}^{\mu}, \hat{p}_{b}^{\nu}\right\}(a, b=1, \ldots, n)$ be generators of the D-dimensional Heisenberg algebras $\mathcal{H}_{a}(a=1, \ldots, n)$

$$
\left[\hat{q}_{a}^{\mu}, \hat{q}_{b}^{\nu}\right]=0=\left[\hat{p}_{a}^{\mu}, \hat{p}_{b}^{\nu}\right], \quad\left[\hat{q}_{a}^{\mu}, \hat{p}_{b}^{\nu}\right]=i \delta^{\mu \nu} \delta_{a b} \quad(\mu, \nu=1, \ldots, D) .
$$

We introduce states $\left|x_{a}\right\rangle$ which diagonalize coordinates \hat{q}_{a}^{μ} :

$$
\hat{q}_{a}^{\mu}\left|x_{a}\right\rangle=x_{a}^{\mu}\left|x_{a}\right\rangle .
$$

These states form the basis in the representation space V_{a} of subalgebra \mathcal{H}_{a}. We also introduce the dual states $\left\langle x_{a}\right|$ such that the orthogonality and completeness conditions are valid

$$
\left\langle x_{a} \mid x_{a}^{\prime}\right\rangle=\delta^{D}\left(x_{a}-x_{a}^{\prime}\right), \quad \int d^{D} x_{a}\left|x_{a}\right\rangle\left\langle x_{a}\right|=I_{a},
$$

where I_{a} is the unit operator in V_{a} and there are no summations over indices a. So, we have the algebra $\mathcal{H}^{(n)}=\oplus_{a=1}^{n} \mathcal{H}_{a}$ which acts in the space $V_{1} \otimes \cdots \otimes V_{n}$ with basis vectors $\left|x_{1}\right\rangle \otimes \cdots\left|x_{n}\right\rangle$.

We use operators $\left(\hat{q}_{a}\right)^{2 \alpha}=\left(\sum_{\mu} \hat{q}_{a}^{\mu} \hat{q}_{a}^{\mu}\right)^{\alpha}$ and $\left(\hat{p}_{a}\right)^{2 \beta}=\left(\sum_{\mu} \hat{p}_{a}^{\mu} \hat{p}_{a}^{\mu}\right)^{\beta}$ with non-integer α and β. These operators are understood as integral operators defined via their integral kernels: $\langle x|(\hat{q})^{-2 \alpha}|y\rangle=(x)^{-2 \alpha} \delta^{D}(x-y)$ and

$$
\begin{gathered}
\langle x| \frac{1}{(\hat{p})^{2 \beta}}|y\rangle=\int \frac{d^{D} k}{(2 \pi)^{D}} \frac{e^{i k(x-y)}}{(k)^{2 \beta}}=\frac{a(\beta)}{(x-y)^{2 \beta^{\prime}}}, \\
a(\beta):=\frac{2^{-2 \beta}}{\pi^{D / 2}} \frac{\Gamma\left(\beta^{\prime}\right)}{\Gamma(\beta)}, \quad \beta^{\prime}:=D / 2-\beta .
\end{gathered}
$$

Important identities in operator presentations:

1. Chain relation $\hat{p}^{-2 \alpha^{\prime}} \hat{p}^{-2 \beta^{\prime}}=\hat{p}^{-2\left(\alpha^{\prime}+\beta^{\prime}\right)} \Rightarrow$

$$
\begin{aligned}
\int \frac{d^{D} z}{(x-z)^{2 \alpha}(z-y)^{2 \beta}} & =\frac{a\left(\alpha^{\prime}+\beta^{\prime}\right)}{a\left(\alpha^{\prime}\right) a\left(\beta^{\prime}\right)} \cdot \frac{1}{(x-y)^{2(\alpha+\beta-D / 2)}} \\
\frac{\alpha<\beta}{x \quad y} & =\frac{a\left(\alpha^{\prime}+\beta^{\prime}\right)}{a\left(\alpha^{\prime}\right) a\left(\beta^{\prime}\right)} \cdot \frac{\alpha+\beta-\frac{D}{2}}{x} y
\end{aligned}
$$

2. Star-triangle relation (STR)

$$
\int \frac{d^{D} x_{0}}{\left(x_{02}\right)^{2 \alpha}\left(x_{01}\right)^{2 \gamma}\left(x_{03}\right)^{2 \beta}}=\frac{a(\gamma)}{a\left(\alpha^{\prime}\right) a\left(\beta^{\prime}\right)} \frac{1}{\left(x_{12}\right)^{2 \beta^{\prime}}\left(x_{23}\right)^{2 \gamma^{\prime}}\left(x_{13}\right)^{2 \alpha^{\prime}}}
$$

where $(\alpha+\beta+\gamma)=D$, and in the operator form [API NPB (2003)]

$$
\left\langle x_{12}\right| \ldots\left|x_{13}\right\rangle \quad \hat{p}^{-2 \alpha^{\prime}} \hat{q}^{-2\left(\alpha^{\prime}+\beta^{\prime}\right)} p^{-2 \beta^{\prime}}=\hat{q}^{-2 \beta^{\prime}} \hat{p}^{-2\left(\alpha^{\prime}+\beta^{\prime}\right)} \hat{q}^{-2 \alpha^{\prime}} \Rightarrow
$$

$\left[\hat{p}^{2 \alpha} \hat{q}^{2 \alpha}, \hat{p}^{2 \beta} \hat{q}^{2 \beta}\right]=0$. Then, STR can be represented graphically

or as Yang-Baxter equation [A.B.Zamolodchikov PLB (1980)]

The class of Feynman graphs produced by looms

Very prospective and interesting recent researches:
[V.Kazakov and E.Olivucci, The loom for general fishnet CFTs, JHEP 06 (2023) 041, arXiv:2212.09732 [hep-th];
V.Kazakov, F.Levkovich-Maslyuk, V.Mishnyakov, Integrable Feynman Graphs and Yangian Symmetry on the Loom, e-Print:2304.04654 [hep-th]]

Variables $x_{i}, y_{i} \in \mathbb{R}^{D}(i=1, \ldots, n)$. Introduce graph building operator Q in $V_{1} \otimes V_{2} \otimes \cdots V_{n}$ and define its integral kernel:

Feynman graph with $\left(M^{y_{n}}-1\right) n$ integrations over \mathbb{R}^{D}

Let we know the complete and orthogonal set of the eigenfunctions

$$
Q\left|\psi_{(\alpha)}\right\rangle=E_{(\alpha)}\left|\psi_{(\alpha)}\right\rangle, \quad\left\langle x_{1} \ldots x_{n} \mid \psi_{(\alpha)}\right\rangle,
$$

where (α) is multi-index, $\sum_{\alpha}\left|\psi_{(\alpha)}\right\rangle\left\langle\psi_{(\alpha)}\right|=I, \quad\left\langle\psi_{(\alpha)} \mid \psi_{(\beta)}\right\rangle=\delta_{(\alpha),(\beta)}$

$$
\left\langle x_{1} \ldots x_{n}\right| Q^{M} \sum_{\alpha}\left|\psi_{(\alpha)}\right\rangle\left\langle\psi_{(\alpha)} \mid y_{1} \ldots y_{n}\right\rangle=\sum_{\alpha} E_{(\alpha)}^{M}\left\langle x_{1} \ldots x_{n} \mid \psi_{(\alpha)}\right\rangle\left\langle\psi_{(\alpha)} \mid y_{1} \ldots y_{n}\right\rangle .
$$

Basso-Dixon correlators in D-dimensional fishnet CFT are of that type. [B.Basso and L.J.Dixon, Gluing Ladder Feynman Diagrams into Fishnets, Phys.Rev.Lett. 119 (2017) 7, 071601; S.Derkachov, V.Kazakov, E. Olivucci,...(2019-2021)]

Consider the algebra $\mathcal{H}^{(2)}=\mathcal{H}_{1}+\mathcal{H}_{2}$, which acts in $V_{1} \otimes V_{2}$ with basis $\left|x_{1}, x_{2}\right\rangle:=\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle$. To evaluate ZZDs in the operator approach we introduce the main object - graph building operator:

$$
\hat{Q}_{12}^{(\beta)}:=\frac{1}{a(\beta)} \mathcal{P}_{12}\left(\hat{p}_{1}\right)^{-2 \beta}\left(\hat{q}_{12}\right)^{-2 \beta},
$$

where $\left(\hat{q}_{12}\right)^{2}=\left(\hat{q}_{1}^{\mu}-\hat{q}_{2}^{\mu}\right)\left(\hat{q}_{1}^{\mu}-\hat{q}_{2}^{\mu}\right)$ and \mathcal{P}_{12} is the permutation operator $\mathcal{P}_{12} \hat{q}_{1}=\hat{q}_{2} \mathcal{P}_{12}, \quad \mathcal{P}_{12} \hat{p}_{1}=\hat{p}_{2} \mathcal{P}_{12}, \quad \mathcal{P}_{12}\left|x_{1}, x_{2}\right\rangle=\left|x_{2}, x_{1}\right\rangle, \quad\left(\mathcal{P}_{12}\right)^{2}=I$.

We depict the kernel $\left\langle x_{1}, x_{2}\right| \hat{Q}_{12}^{(\beta)}\left|y_{1}, y_{2}\right\rangle$ of the graph building operator $(\mathrm{GBO}) \hat{Q}_{12}^{(\beta)}$ as

$$
\begin{aligned}
\mathcal{P}_{12} .\left.{ }_{x_{1}}^{x_{1}} \overbrace{\beta^{\prime}}^{x_{2} \ldots \ldots . .}\right|_{y_{2}} ^{y_{1}}=x_{x_{1}} \ldots \ldots . .\left.\right|_{y_{2}} ^{x_{2}}=\frac{1}{\beta^{\prime}} & \left\langle x_{1}, x_{2}\right| \mathcal{P}_{12}\left(\hat{p}_{1}\right)^{-2 \beta}\left(\hat{q}_{12}\right)^{-2 \beta}\left|y_{1}, y_{2}\right\rangle= \\
& =\frac{1}{\left(x_{2}-y_{1}\right)^{2 \beta^{\prime}}\left(y_{1}-y_{2}\right)^{2 \beta}} \delta^{D}\left(x_{1}-y_{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { ere } \\
& x_{1} \cdots \cdots \cdots x_{2}=\delta^{D}\left(x_{1}-x_{2}\right), \quad x_{1} _\beta x_{2}=\left(x_{1}-x_{2}\right)^{-2 \beta} .
\end{aligned}
$$

Now we note that $Q_{12}^{(\beta)}$ is the GBO for the planar zig-zag Feynman graphs. Example for \hat{Q}_{12}^{2} :

To obtain 2-loop fish diagram we multiply this by $\left(x_{1}-x_{2}\right)^{-2 \beta}$ and integrate over x_{1} and y_{2}.
for even loops $(2 N-2)$

Here we remove the propagator $1 /\left(y_{1}-y_{2}\right)^{2 \beta}$.

```
for odd loops \((2 N-1)\)
```


The vertices • denote the integration over \mathbb{R}^{D}.
We stress that these Feynman integrals represent the contribution to the 4-point correlation functions in bi-scalar D-dimensional "fishnet" theory [V.Kazakov a.o. $(2016,2018)]$. For clarity, we present the zig-zag diagrams in the form of the spiral graphs having the cylindrical topology. We also stress that integral kernels, shown in the pictures, in the case $D=4$ and $\beta=1$, contribute to Green's functions of the standard $\phi_{D=4}^{4}$ field theory.

The next important statement is that $Q_{12}^{(\beta)}$ is also the graph building operator for the integrals of the planar zig-zag 2-point Feynman graphs:

1. for even number of loops 2 N

$$
=\int d^{D} x_{1} d^{D} y_{2} \frac{\left\langle x_{1}, x_{2}\right|\left(\hat{Q}_{12}^{(\beta)}\right)^{2 N}\left|y_{1}, y_{2}\right\rangle}{\left(x_{1}-x_{2}\right)^{2 \beta}}
$$

$\underline{\text { 2. for odd number of loops }(2 N+1)}$

Below we use these representations to evaluate exactly the corresponding classes of 2-point and 4-point Feynman diagrams. For this we need to find eigenvalues and complete set of eigenvectors for $\mathrm{GBO} \hat{Q}_{12}^{(\beta)}$ Remark. The elements $H_{\beta}:=\mathcal{P}_{12} \hat{Q}_{12}^{(\beta)} \equiv\left(\hat{p}_{1}\right)^{-2 \beta}\left(\hat{q}_{12}\right)^{-2 \beta}$ form a commutative set of operators $\left[H_{\alpha}, H_{\beta}\right]=0(\forall \alpha, \beta)$.

To find eigenvectors for the graph building operator $Q_{12}^{(\beta)}$ we consider the standard 3-point correlation function (in D-dimensional CFT) of three fields $\mathcal{O}_{\Delta_{1}}$, $\mathcal{O}_{\Delta_{2}}$ and $\mathcal{O}_{\Delta}^{\mu_{1} \ldots \mu_{n}}$, where $\mathcal{O}_{\Delta_{1}}, \mathcal{O}_{\Delta_{2}}$ are scalar fields with conf. dimensions Δ_{1}, Δ_{2}, while $\mathcal{O}_{\Delta}^{\mu_{1} \ldots \mu_{n}}$ - (symmetric, traceless and transverse) tensor field with conf. dimension Δ. The conformally invariant expression of this correlation function (up to a normalization) is unique and well known [V.K. Dobrev, G. Mack, V.B. Petkova, S. G. Petrova, I.T. Todorov (1976,1977); E.S.Fradkin , M.Y.Palchik (1978);...]

where $u \in \mathbb{C}^{D}$ such that $(u, u)=u^{\mu} u^{\mu}=0$ and
$\eta=\frac{1}{2}\left(\Delta_{1}+\Delta_{2}-\Delta+n\right), \quad \delta=\frac{1}{2}\left(\Delta_{1}+\Delta-\Delta_{2}-n\right), \quad \rho=\frac{1}{2}\left(\Delta_{2}+\Delta-\Delta_{1}-n\right)$.

We need the special form of the 3-point function (conformal triangle) when parameters $\Delta, \Delta_{1}, \Delta_{2}$ are related to two numbers $\alpha \in \mathbb{C}, \beta \in \mathbb{R}$:

$$
\Delta_{1}=\frac{D}{2}, \quad \Delta_{2}=\frac{D}{2}-\beta, \quad \Delta=D-2 \alpha-\beta+n
$$

so we have for conformal triangle:

$$
\left\langle y_{1}, y_{2} \mid \Psi_{\alpha, \beta}^{(n, u)}(y)\right\rangle:=\frac{\left(\frac{\left(u, y-y_{1}\right)}{\left(y-y_{1}\right)^{2}}-\frac{\left(u, y-y_{2}\right)}{\left(y-y_{2}\right)^{2}}\right)^{n}}{\left(y_{1}-y_{2}\right)^{2 \alpha}\left(y-y_{1}\right)^{2 \alpha^{\prime}}\left(y-y_{2}\right)^{2(\alpha+\beta)^{\prime}}} .
$$

Proposition 1. The wave function $\left|\Psi_{\alpha, \beta}^{(n, u)}(y)\right\rangle=u^{\mu_{1}} \cdots u^{\mu_{n}}\left|\Psi_{\alpha, \beta}^{\mu_{1} \ldots \mu_{n}}(y)\right\rangle$ $(\forall \alpha, \beta \in \mathbb{C})$ is the eigenvector for the graph building operator

$$
\hat{Q}_{12}^{(\beta)}\left|\Psi_{\alpha, \beta}^{(n, u)}(y)\right\rangle=\tau(\alpha, \beta, n)\left|\Psi_{\alpha, \beta}^{(n, u)}(y)\right\rangle
$$

with the eigenvalue

$$
\tau(\alpha, \beta, n)=(-1)^{n} \pi^{D / 2} \frac{\Gamma(\beta) \Gamma(\alpha) \Gamma\left((\alpha+\beta)^{\prime}+n\right)}{\Gamma\left(\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}+n\right) \Gamma(\alpha+\beta)} .
$$

The analogous statement, for $D=4$ and $\beta=1$, was made by [N.Gromov, V.Kazakov and G.Korchemsky (2018)].

Note that with respect to the standard scalar product in $V_{1} \otimes V_{2}$ the operator $\hat{Q}_{12}^{(\beta)}=\frac{1}{a(\beta)} \mathcal{P}_{12}\left(\hat{p}_{1}\right)^{-2 \beta}\left(\hat{q}_{12}\right)^{-2 \beta}($ for $\beta \in \mathbb{R})$ is Hermitian up to the equivalence transformation:

$$
\begin{gathered}
\left(\hat{Q}_{12}^{(\beta)}\right)^{\dagger}=\frac{1}{a(\beta)}\left(\hat{q}_{12}\right)^{-2 \beta}\left(\hat{p}_{1}\right)^{-2 \beta} \mathcal{P}_{12}=U \hat{Q}_{12}^{(\beta)} U^{-1} \\
U:=\mathcal{P}_{12}\left(\hat{q}_{12}\right)^{-2 \beta}=\left(\hat{q}_{12}\right)^{-2 \beta} \mathcal{P}_{12}
\end{gathered}
$$

Thus, we modify the scalar product in $V_{1} \otimes V_{2}$

$$
\langle\bar{\Psi} \mid \Phi\rangle:=\langle\Psi| U|\Phi\rangle=\int d^{4} x_{1} d^{4} x_{2} \frac{\Psi^{*}\left(x_{2}, x_{1}\right) \Phi\left(x_{1}, x_{2}\right)}{\left(x_{1}-x_{2}\right)^{2 \beta}},
$$

where $\beta \equiv D-\Delta_{1}-\Delta_{2}$ and with respect to this new scalar product the operator $\hat{Q}_{12}^{(\beta)}$ is Hermitian. Here we introduced the special conjugation

$$
\langle\bar{\Psi}|:=\langle\Psi| U=\langle\Psi|\left(\hat{q}_{12}\right)^{-2 \beta} \mathcal{P}_{12}
$$

and operator U plays the role of the metric in $V_{1} \otimes V_{2}$.

Complex parameter α should be also partially fixed. Indeed, we define conformal dilatation operator

$$
\hat{\mathrm{D}}=\frac{i}{2} \sum_{a=1}^{2}\left(\hat{q}_{a} \hat{p}_{a}+\hat{p}_{a} \hat{q}_{a}\right)+\frac{1}{2}\left(y^{\mu} \partial_{y^{\mu}}+\partial_{y^{\mu}} y^{\mu}\right)-\beta
$$

such that $\left[\hat{Q}_{12}^{(\beta)}, \hat{\mathrm{D}}\right]=0$ and it is diagonalized simultaneously with $\hat{Q}_{12}^{(\beta)}$:

$$
\hat{\mathrm{D}}\left|\Psi_{\alpha, \beta}^{(n, u)}(y)\right\rangle=\left(2 \alpha+\beta-\frac{1}{2} D-n\right)\left|\Psi_{\alpha, \beta}^{(n, u)}(y)\right\rangle
$$

For $\beta \in \mathbb{R}$, we obtain $\hat{\mathrm{D}}^{\dagger}=-U \hat{\mathrm{D}} U^{-1}$. Thus, operator $\hat{\mathrm{D}}$ is anti-Hermitian with respect to the same new scalar product $\langle\Psi| U|\Phi\rangle$, and it gives the condition for eigenvalues of \hat{D} :

$$
2\left(\alpha^{*}+\alpha\right)=2 n+D-2 \beta \quad \Rightarrow \quad \alpha=\frac{1}{2}(n+D / 2-\beta)-i \nu, \quad \nu \in \mathbb{R} .
$$

So, we see that the eigenvalue problem for $\hat{Q}_{12}^{(\beta)}$ is characterized by two real numbers $\beta, \nu \in \mathbb{R}$ and we have $\Delta=\frac{D}{2}+2 i \nu$.

Remarkable fact: under these conditions, the GBO eigenvalue is real

$$
\tau(\alpha, \beta, n)=(-1)^{n} \frac{\pi^{D / 2} \Gamma(\beta) \Gamma\left(\frac{D}{4}+\frac{n}{2}-\frac{\beta}{2}+i \nu\right) \Gamma\left(\frac{D}{4}+\frac{n}{2}-\frac{\beta}{2}-i \nu\right)}{\Gamma\left(\beta^{\prime}\right) \Gamma\left(\frac{D}{4}+\frac{n}{2}+\frac{\beta}{2}+i \nu\right) \Gamma\left(\frac{D}{4}+\frac{n}{2}+\frac{\beta}{2}-i \nu\right)} \in \mathbb{R} .
$$

In view of conditions on α, β, we introduce concise notation

$$
\begin{aligned}
\left|\Psi_{\nu, \beta, y}^{(n, u)}\right\rangle & :=\left|\Psi_{\alpha, \beta}^{(n, u)}(y)\right\rangle=u^{\mu_{1}} \cdots u^{\mu_{n}}\left|\Psi_{\alpha, \beta}^{\mu_{1} \ldots \mu_{n}}(y)\right\rangle \\
& \Psi_{\nu, \beta, y}^{(n, u)}\left(x_{1}, x_{2}\right):=\left\langle x_{1}, x_{2} \mid \Psi_{\nu, \beta, y}^{(n, u)}\right\rangle
\end{aligned}
$$

Since the eigenvalue τ is real (it is invariant under the transformation $\nu \rightarrow-\nu)$, two eigenvectors $\left|\Psi_{\nu, \beta, x}^{(n, u)}\right\rangle$ and $\left|\Psi_{\lambda, \beta, y}^{(m, v)}\right\rangle$, having different eigenvalues τ (e.g. $n \neq m$ and $\lambda \neq \pm \nu$), should be orthogonal to each other with respect to the new scalar product. Indeed, we have the following orthogonality condition for two conformal triangles (see, e.g., [V.K. Dobrev, G. Mack, I.T.Todorov, M.C.Mintchev, V.B.Petkova (1976-1978); N. Gromov, V. Kazakov, and G. Korchemsky (2019)])

$$
\overline{\left\langle\Psi_{\lambda, \beta, y}^{(m, v)}\right.}\left|\Psi_{\nu, \beta, x}^{(n, u)}\right\rangle=\int d^{D} x_{1} d^{D} x_{2}\left\langle\Psi_{\lambda, \beta, y}^{(m, v)}\right| U\left|x_{1} x_{2}\right\rangle\left\langle x_{1} x_{2} \mid \Psi_{\nu, \beta, x}^{(n, u)}\right\rangle=
$$

$$
\begin{align*}
&=\int d^{D} x_{1} d^{D} x_{2} \frac{\left(\Psi_{\lambda, \beta, y}^{(m, v)}\left(x_{2}, x_{1}\right)\right)^{*} \Psi_{\nu, \beta, x}^{(n, u)}\left(x_{1}, x_{2}\right)}{\left(x_{1}-x_{2}\right)^{2\left(D-\Delta_{1}-\Delta_{2}\right)}}= \\
&= \delta_{n m} C_{1}(n, \nu) \delta_{n m} \delta(\nu-\lambda) \delta^{D}(x-y)(u, v)^{n}+ \\
&+C_{2}(n, \nu) \delta_{n m} \delta(\nu+\lambda) \frac{\left((u, v)-2 \frac{(u, x-y)(v, x-y)}{(x-y)^{2}}\right)^{n}}{(x-y)^{2(D / 2+2 i \nu)}} \tag{3}
\end{align*}
$$

where $(u, v)=u^{\mu} v^{\mu}, \beta=D-\Delta_{1}-\Delta_{2}=\Delta_{1}-\Delta_{2}$ and

$$
\begin{equation*}
C_{1}(n, \nu)=\frac{(-1)^{n} 2^{1-n} \pi^{3 D / 2+1} n!\Gamma(2 i \nu) \Gamma(-2 i \nu)}{\Gamma\left(\frac{D}{2}+n\right)\left(\left(\frac{D}{2}+n-1\right)^{2}+4 \nu^{2}\right) \Gamma\left(\frac{D}{2}+2 i \nu-1\right) \Gamma\left(\frac{D}{2}-2 i \nu-1\right)} \tag{4}
\end{equation*}
$$

We note that the coefficient C_{1} is independent on β and plays the important role as the inverse of the Plancherel measure used in the completeness condition (resolution of unity); see below. In contrast to this, the coefficient C_{2} in (3) depends on β, but the explicit form for C_{2} will not be important for us.

$$
\begin{array}{r}
C_{2}(n, \nu)=2 \pi^{D+1} \frac{n!}{2^{n}} \frac{\Gamma\left(\frac{D}{4}-\frac{\Delta_{1}-\Delta_{2}}{2}+\frac{n}{2}-i \nu\right)}{\Gamma\left(\frac{D}{4}-\frac{\Delta_{1}-\Delta_{2}}{2}+\frac{n}{2}+i \nu\right)} \frac{\Gamma\left(\frac{D}{4}+\frac{\Delta_{1}-\Delta_{2}}{2}+\frac{n}{2}-i \nu\right)}{\Gamma\left(\frac{D}{4}+\frac{\Delta_{1}-\Delta_{2}}{2}+\frac{n}{2}+i \nu\right)} . \\
 \tag{5}\\
\frac{\Gamma(2 i \nu) \Gamma\left(\frac{D}{2}+2 i \nu-1+n\right)}{\Gamma\left(\frac{D}{2}+n-2 i \nu\right) \Gamma\left(\frac{D}{2}+2 i \nu-1\right) \Gamma\left(\frac{D}{2}+n\right)}
\end{array}
$$

Completeness (or resolution of unity I) for the basis of the eigenfunctions $\left|\Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}\right\rangle$ is written as [V.K. Dobrev, G. Mack, I.T.Todorov, M.C.Mintchev, V.B.Petkova (1976-1978); N. Gromov, V. Kazakov, and G. Korchemsky (2019)]

$$
\begin{aligned}
& I=\sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{d \nu}{C_{1}(n, \nu)} \int d^{D}\left|\Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}\right\rangle\left\langle\overline{\Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}}\right|= \\
& =\sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{d \nu}{C_{1}(n, \nu)} \int d^{D} x\left|\Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}\right\rangle\left\langle\Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}\right| U
\end{aligned}
$$

This is main formula needed to evaluation of ZZDs.

Substitution of this resolution of unity into expressions for zig-zag 4-point Feynman graphs gives (here M is a number of loops)

$$
\begin{align*}
& G_{4}^{(M)}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=\left\langle x_{1}, x_{2}\right|\left(\hat{Q}_{12}^{(\beta)}\right)^{M}\left|y_{1}, y_{2}\right\rangle\left(y_{1}-y_{2}\right)^{2 \beta}= \\
& =\sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{d \nu}{C_{1}(n, \nu)} \int d^{D} \times\left\langle x_{1}, x_{2}\right|\left(\hat{Q}_{12}^{(\beta)}\right)^{M}\left|\Psi_{\nu, \beta, \chi}^{\mu_{1} \ldots \mu_{n}}\right\rangle\left\langle\Psi_{\nu, \beta, \chi}^{\mu_{1} \cdots \mu_{n}}\right| U\left|y_{1}, y_{2}\right\rangle\left(y_{1}-y_{2}\right)^{2 \beta}= \\
& \quad=\sum_{n=0}^{\infty} \int_{0}^{\infty} d \nu \frac{(\tau(\alpha, \beta, n))^{M}}{C_{1}(n, \nu)} \int d^{D} \times\left\langle x_{1}, x_{2} \mid \Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}\right\rangle\left\langle\Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}} \mid y_{2}, y_{1}\right\rangle, \tag{6}
\end{align*}
$$

where the integral over x in the right hand side of (6) is evaluated in terms of conformal blocks [F.A.Dolan, H.Osborn (2001,2004); H.Osborn, A.Petkou (1994)] (in four-dimensional case, this integral was considered in detail by [N. Gromov, V. Kazakov, and G. Korchemsky (2019)]).
Further we use the expression for 2-point zig-zag functions $G_{2}^{(M)}\left(x_{2}, y_{1}\right)$

$$
G_{2}^{(M)}\left(x_{2}, y_{1}\right)=\int d^{D} x_{1} d^{D} y_{2} \frac{\left\langle x_{1}, x_{2}\right|\left(\hat{Q}_{12}^{(\beta)}\right)^{M}\left|y_{1}, y_{2}\right\rangle}{\left(x_{1}-x_{2}\right)^{2 \beta}}=
$$

and make the same procedure as for 4-point ZZ functions: $G_{2}^{(M)}\left(x_{2}, y_{1}\right)=$

$$
\begin{gather*}
=\sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{d \nu}{C_{1}(n, \nu)} \int d^{D}{ }_{x_{1}} d^{D} y_{2} d^{D} x \frac{\left\langle x_{1}, x_{2}\right|\left(\hat{Q}_{12}^{(\beta)}\right)^{M}\left|\Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}\right\rangle\left\langle\Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}\right| U\left|y_{1}, y_{2}\right\rangle}{\left(x_{1}-x_{2}\right)^{2 \beta}}= \\
=\sum_{n=0}^{\infty} \int_{0}^{\infty} d \nu \frac{(\tau(\alpha, \beta, n))^{M}}{C_{1}(n, \nu)} \int d\left(x_{1}, y_{2}, x\right) \frac{\left\langle x_{1}, x_{2} \mid \Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}\right\rangle\left\langle\Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}} \mid y_{2}, y_{1}\right\rangle}{\left(x_{1}-x_{2}\right)^{2 \beta}\left(y_{1}-y_{2}\right)^{2 \beta}}= \\
\quad=\frac{1}{\left(x_{2}-y_{1}\right)^{2 \beta}} \frac{\Gamma(D / 2-1)}{\Gamma(D-2)} \sum_{n=0}^{\infty} \frac{(-1)^{n} \Gamma(n+D-2)}{2^{n} \Gamma(n+D / 2-1)} \int_{0}^{\infty} d \nu \frac{\tau^{M+3}(\alpha, \beta, n)}{C_{1}(n, \nu)}, \tag{7}
\end{gather*}
$$

where we apply the integral

$$
\begin{align*}
& \int d^{D} x_{1} d^{D} y_{2} d^{D} x \frac{\left\langle x_{1}, x_{2} \mid \Psi_{\nu, \beta, x}^{\mu_{1} \cdots \mu_{n}}\right\rangle}{\left(x_{1}-x_{2}\right)^{2 \beta}\left(y_{1}-y_{2}\right)^{2 \beta}}= \\
&=\frac{(-1)^{n} \Gamma(n+D-2) \Gamma(D / 2-1)}{2^{n} \Gamma(n+D / 2-1) \Gamma(D-2)} \frac{\tau^{3}(\alpha, \beta, n)}{\left(x_{2}-y_{1}\right)^{2 \beta}} . \tag{8}
\end{align*}
$$

The integral over ν in the right hand side of (7) for $\beta=1$ and even $D>2$ can be evaluated explicitly and gives the linear combination of ζ-values with rational coefficients.

To prove Broadhurst and Kreimer conjecture we need to consider the special case $\beta=1, D=4$. In this case $\alpha=\frac{n+1}{2}-i \nu$ and GBO eigenvalue is simplified

$$
\tau(\nu, n):=\left.\tau(\alpha, \beta, n)\right|_{D=4, \beta=1}=\frac{(-1)^{n}(2 \pi)^{2}}{(1+n)^{2}+4 \nu^{2}} .
$$

The coefficient C_{1} in the definition of the Plancherel mesure for $\beta=1$, $D=4$ is reduced to

$$
C_{1}(n, \nu)=\frac{\pi^{5}}{2^{n+3}(1+n) \nu^{2}} \tau(\nu, n)
$$

Finally we substitute $\tau(\nu, n), C_{1}(n, \nu)$ into (7), integrate over ν and obtain

$$
\begin{equation*}
\left.G_{2}\left(x_{2}, y_{1}\right)\right|_{D=4, \beta=1}=\frac{4 \pi^{2 M}}{\left(x_{2}-y_{1}\right)^{2}} C_{M} \sum_{n=0}^{\infty}(-1)^{n(M+1)} \frac{1}{(n+1)^{2 M-1}} \tag{9}
\end{equation*}
$$

where $C_{M}=\frac{1}{(M+1)}\binom{2 M}{M}$ is a Catalan number. The relation (9) is equivalent the Broadhurst and Kreimer formula for the M loop zig-zag diagram (it corresponds to the $(M+1)$ loop contribution to the β-function in $\phi_{D=4}^{4}$ theory).

The generalization of the graph building operator is

$$
Q_{12}^{(\zeta, \kappa, \gamma)}:=\frac{1}{a(\kappa) a(\gamma)} \mathcal{P}_{12} \hat{q}_{12}^{-2 \zeta} \hat{p}_{1}^{-2 \kappa} \hat{p}_{2}^{-2 \gamma} \hat{q}_{12}^{-2 \beta}, \quad \zeta+\beta=\kappa+\gamma .
$$

We depict the integral kernel of the D-dimensional operator $Q_{12}^{(\zeta, \kappa, \gamma)}$ as follows ($\left(\kappa^{\prime}:=D / 2-\kappa, \gamma^{\prime}:=D / 2-\gamma\right)$)

$$
\begin{aligned}
& =\frac{1}{\left(x_{1}-x_{2}\right)^{2 \zeta}\left(x_{2}-y_{1}\right)^{2 k^{\prime}}\left(x_{1}-y_{2}\right)^{2 \gamma^{\prime}}\left(y_{1}-y_{2}\right)^{2 \beta}} .
\end{aligned}
$$

Thus, the operator $Q_{12}^{(\zeta, \kappa, \gamma)}$ is the GBO for the ladder diagrams

Proposition 2. The eigenfunction for the operator $Q_{12}^{(\zeta, \kappa, \gamma)}$ is given by 3-point correlation function (conformal triangle)

$$
\left\langle y_{1}, y_{2} \mid \Psi_{\delta, \rho}^{(n, u)}(y)\right\rangle=\int_{y_{2}}^{y_{1}} y \cdot\left(\frac{\left(u, y-y_{1}\right)}{\left(y-y_{1}\right)^{2}}-\frac{\left(u, y-y_{2}\right)}{\left(y-y_{2}\right)^{2}}\right)^{n} \equiv \underbrace{\alpha}_{y_{2}} \underbrace{y_{1}}_{\rho, n} y
$$

where we depict the nontrivial rank- n tensor numerator as arrows on the lines (the rank is fixed by indices on the lines: $\rho \rightarrow(\rho, n)$, etc) and denote

$$
2 \alpha=\Delta_{1}+\Delta_{2}-(\Delta-n), \quad 2 \delta=\Delta_{1}-\Delta_{2}+(\Delta-n), \quad 2 \rho=\Delta_{2}-\Delta_{1}+(\Delta-n),
$$

i.e., conformal dimensions $\Delta, \Delta_{1}, \Delta_{2}$ are arbitrary parameters in this case. Thus, we have

$$
Q_{12}^{(\zeta, \kappa, \gamma)}\left|\Psi_{\delta, \rho}^{(n, u)}(y)\right\rangle=\bar{\tau}(\kappa, \gamma ; \delta, \alpha ; n)\left|\Psi_{\delta, \rho}^{(n, u)}(y)\right\rangle
$$

where $\alpha+\rho=\kappa^{\prime}, \alpha+\delta=\gamma^{\prime}$ and $\bar{\tau}(\kappa, \gamma ; \delta, \alpha ; n)$ is an eigenvalue

$$
\begin{gathered}
\bar{\tau}(\kappa, \gamma ; \delta, \alpha ; n)=(-1)^{n} \cdot \tau\left(\delta^{\prime}, \kappa, n\right) \cdot \tau(\alpha, \gamma, n) \\
\tau(\alpha, \beta, n)=(-1)^{n} \frac{\pi^{D / 2} \Gamma(\beta) \Gamma(\alpha) \Gamma\left(\alpha^{\prime}-\beta+n\right)}{\Gamma\left(\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}+n\right) \Gamma(\alpha+\beta)}
\end{gathered}
$$

Remark 1. We introduce new notation $\beta+\zeta=-2 u$ and use expressions for α, δ, ρ via conf. dimensions $\Delta_{1,2}$:

$$
\beta-\zeta=D-\Delta_{1}-\Delta_{2}, \quad \gamma-\zeta=D / 2-\Delta_{1}, \quad \kappa-\zeta=D / 2-\Delta_{2} .
$$

In this case the general GBO is equal (up to a normalization factor) to the R-operator [D. Chicherin, S. Derkachov, A. P. Isaev (2013)]

$$
\begin{gathered}
R_{\Delta_{1} \Delta_{2}}(u)=a(\kappa) a(\gamma) Q_{12}^{(\zeta, \kappa, \gamma)}= \\
=\mathcal{P}_{12} \hat{q}_{12}^{2\left(u+\frac{D-\Delta_{1}-\Delta_{2}}{2}\right)} \hat{p}_{1}^{2\left(u+\frac{\Delta_{2}-\Delta_{1}}{2}\right)} \hat{p}_{2}^{2\left(u+\frac{\Delta_{1}-\Delta_{2}}{2}\right)} \hat{q}_{12}^{2\left(u+\frac{\Delta_{1}+\Delta_{2}-D}{2}\right)}
\end{gathered}
$$

which is conformal invariant solution of the Yang-Baxter equation

$$
R_{\Delta_{1} \Delta_{2}}(u-v) R_{\Delta_{1} \Delta_{3}}(u) R_{\Delta_{2} \Delta_{3}}(v)=R_{\Delta_{2} \Delta_{3}}(v) R_{\Delta_{1} \Delta_{3}}(u) R_{\Delta_{1} \Delta_{2}}(u-v) .
$$

The operator $R_{\Delta_{1} \Delta_{2}}(u)$ intertwines two spaces $V_{\Delta_{1}} \otimes V_{\Delta_{2}} \rightarrow V_{\Delta_{2}} \otimes V_{\Delta_{1}}$, where $V_{\Delta_{i}}$ is the space of scalar conf. fields with dimensions Δ_{i}. Let we have $V_{\Delta_{1}} \otimes V_{\Delta_{2}}=\sum_{\Delta, n} V_{\Delta}^{(n)}$, where $V_{\Delta}^{(n)}$ - is the space of tensor fields. Thus, eigenfunctions of $R_{\Delta_{1} \Delta_{2}}(u)=a(\kappa) a(\gamma) Q_{12}^{(\zeta, \kappa, \gamma)}$ should describe the fusion of two scalar conformal fields with dimensions Δ_{1}, Δ_{2} into the composite tensor field with dimension Δ. Thus, conformal triangles are Clebsch-Gordan coefficients which correspond this fusion.

Remark 2. The special case (for $D=1$ and $\Delta_{1}=\Delta_{2} \equiv \frac{D}{2}-\xi$) of this R-operator underlies Lipatov's integrable model of the high-energy asymptotics of multicolor QCD. Indeed, we have

$$
\begin{gathered}
\mathcal{P}_{12} R_{12}^{(\kappa, \xi)}=\hat{q}_{12}^{2(u+\xi)} \hat{p}_{1}^{2 u} \hat{p}_{2}^{2 u} \hat{q}_{12}^{2(u-\xi)} \stackrel{u \rightarrow 0}{\rightarrow} 1+u h_{12}^{(\xi)}+\ldots, \\
h_{12}^{(\xi)}=2 \ln q_{12}^{2}+\hat{q}_{12}^{2 \xi} \ln \left(\hat{p}_{1}^{2} \hat{p}_{2}^{2}\right) \hat{q}_{12}^{-2 \xi},
\end{gathered}
$$

where $h_{12}^{(\xi)}$ is a local density of the Lipatov's Hamiltonian.

Conclusion.

In this report, we demonstrated
1.) how the investigations of the multidimensional CFT can be applied, e.g., in the analytical evaluations of massless Feynman diagrams.
2.) We believe that the approach described here gives the universal method of the evaluation of contributions into the special class of correlation functions and critical exponents in various CFT.
3.) We also wonder if it is possible to apply our D-dimensional generalizations to evaluation similar 4-points functions (with fermions) that arise in the generalized 'fishnet" model, in double scaling limit of γ-deformed $N=4$ SYM theory.

Alexey Isaev, Yerevan 2022

