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Background

• Spinning particle concept introduced in the context of quasi-classical dy-
namics of spin [Frenkel, 1926]. Spinning particles are considered as point
particles with internal degrees of freedom [Corben,1986; Frydryszak, 1996].

• If a quantum mechanical system realizes an irreducible representation, the
classical limit is the dynamical system corresponding to the co-adjoint orbit
of the Poincare group (Kirillov, Kostant & Sourieau);

•Models of irreducible spinning particles are known for massless and massive
particles in various dimensions. Kuzenko, Lyakhovich, Segal, 1995; Ners-
essian, Ramos, 1998; Nersessian, Manvelyan, Muller-Kirsten, 2000; Nerses-
sian, 2001; Staruszkiewicz, 2008; Bratek, 2010; Duval, Horvathy, 2015.

• Spinning particle admit consistent couplings with general electromagnetic
and gravitational field [Lyakhovich, Sharapov, Segal, 1996]. Equations of
motion are studied in uniform magnetic field, and the Coulomb field [De-
riglazov, Pupasov-Maksimov, 2014; K., Sinelnikov, 2023].
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Particles and surfaces

Example 1. Massive anyon [Gorbunov, Kuzenko, Lyakhovich, 1996]

S [x , φ] =

∫ (
−m

√
−ẋ2

(
1− 2s

m

φ̇

(n, ẋ)
− ϱ2

m2

φ̇2

(n, ẋ)2
− ϱ

(∂φn, ẋ)

(n, ẋ)

)
dτ .

(1)
Here, n = (1,− cosφ, sinφ). Solution: general lines on a circular cylinder
of radius r2 = m−2(2s2 + ϱ2) with the tangent vector of symmetry axis p.

Example 2. Anyon with light-like paths [Nersessian, Ramos, 1998]

S [x , e+] =

∫
dσ(2α−m|dx/dσ − e+|) , σ̇ =

√
ė+ , e2+ ≈ 0 .

(2)
Solution: light-like lines with constant curvature. Such lines lie on a circular
cylinder of radius r = s/m with the tangent vector of axis p; ms = α2.

∗ We use a mostly positive signature of the Minkowski metric.
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Problem

Spinnning particle

Geometrical object Co-orbit

EoMs integration Lagrangian ansats Configuration space

???

Q.: What geometrical objects in Minkowski space correspond to irreducible
spinning particles?
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Dynamics of irreducible spinning particle

The state of spinning particle is determined by the values of (linear) momen-
tum p and total angular momentum J, being subjected to the mass-shell
and spin-shell conditions.

• Both the momentum p and total angular momentum J are integrals of
motion for free particle,

ṗ = 0 , J̇ = 0 . (3)

• The total angular momentum J is the sum of orbital angular momentum
and spin angular momentum,

J = x ∧ p + S . (4)

• The spin angular momentum S is subjected to the set of ”Lorentz-spin-
shell” conditions [Kaparulin, Lyakhovich, 2017].
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Irreducibly of representation and spin

Consider the action of operators of momentum and total angular momentum
p̂, Ĵ on the particle positions,

p̂ax
b = iδa

b , Ĵabx
c ≡ (xap̂b − xbp̂a + Ŝab)x

c = i(xaδb
c − xbδa

c) .

(5)
Once orbital part of angular momentum already generates space-time rota-
tions, the spin angular momentum acts on positions in a trivially,

Ŝabf (x
c) = 0 , ∀f (x). (6)

Once the representation is irreducible of the Poincare group, any linear
operator acting on the space of states, and commuting with p̂ and Ĵ, should
be a multiple of unit. This applies not only to the elements of the universal
enveloping algebra of the Poincare group, but also to any polynomial in the
Casimir operators constructed from Ŝ . This conclusion does not depend on
the particular choice of internal variables parameterising the configuration
space of spin.

6 / 19



Lorents-spin-shell conditions

In d-dimensional space-time, the Lorentz group has [d/2] Casimir operators,
being the polynomials in Ŝ .

• In d = 3, we have one Casimir operator,

C0(Ŝ) =
1

4
ŜabŜ

ab. (7)

• In d = 4, we have two Casimir operators,

C0(Ŝ) =
1

4
ŜabŜ

ab , C1(Ŝ) =
1

4
εabcd Ŝ

abŜcd . (8)

• In d = 5, we have two Casimir operators,

C0(Ŝ) =
1

4
ŜabŜ

ab , C1(Ŝ) = tr(S4) . (9)

• In d = 6, we have three Casimir operators,

C0(Ŝ) =
1

4
ŜabŜ

ab , C1(Ŝ) =
1

4
εabcdef Ŝ

abŜcd Ŝef , C2(Ŝ) = tr(S4) . (10)
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Irreducibility of representation and world sheet

In the classical limit, the Casimir operators become Casimir functions, which
has to be constant observable.

• In so doing, we get the set of constraints involving spin,

Ca(Ŝ) = ϱaid ⇒ Ca(S) = ϱa , a = 1, . . . , [d/2] . (11)

• Since S = J − x ∧ p, we get restrictions on the classical particle position,

Ca(J − x ∧ p) = ϱa , a = 1, . . . , [d/2] . (12)

Conclusion

The irreducible spinning particles can be considered as surfaces in space-
time. If the world sheet position determines the particle state in a unique
way, the set of world sheets is isomorphic to the co-orbit.∗

∗The opposite is not necessarily true.
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Irreducible spinning particle in 3d space-time

Consider 3d Minkowski space with the coordinates xa, a = 0, 1, 2. Denote
by pa the vector of momentum, and by J = [x , p] + S the vector of particle
total angular momentum, being dual of Jab.

Mass-shell and spin-shell conditions:

(p, p) +m2 = 0 , (p, J) = ms. (13)

Depending on the values of the parameters m, s, three options are possible:

• Massive particle with nonzero (zero) spin: m ̸= 0, s ̸= 0 (s = 0).

• Spinning particle of continuous helicity: m = 0, ms ̸= 0.

• Massless particle m = 0, s = 0.

Single Lorentz-spin-shell condition read

(S , S) = ϱ2. (14)

Here, we assume that ϱ ≥ 0 .
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World sheet classification in 3d space-time

The world sheet condition has the form

(S , S) ≡ (J − [x , p], J − [x , p]) = ϱ2. (15)

• If m and s are nonzero (massive particle), the world sheet equation deter-
mines a circular cylinder of radius m2r2 = ϱ2 + s2 with a time-like axis,

(x , n)2 + (x − y)2 = r2 , n =
p

m
, y =

1

m2
[p, J] . (16)

• If m = 0 and ms = σ (continuous helicity particle), world sheet equation
determines a parabolic cylinder with a light-like axis and focal distance σ,

(x , p)2 + 2(x , v) + a = 0 , v = [J, p] , a = J2 − ϱ2 . (17)

• If m = 0 and s = 0 (massless particle), world sheet equation determines
a pair of planes with one and the same normal,

(x , p)2 + a = 0 , a = J2 − ϱ2 . (18)

Note: The space of bi-planes is not isomorphic to the co-orbit.
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World lines on world sheets

The spinning particle classical trajectories are general lines x(τ) lying on a
unique representative in the set of world sheets. Using this fact, we need:

• to find a system of ODEs describing general lines that lie on a unique
representative in the set of cylindrical surfaces;

• to express the momentum and total angular momentum in terms deriva-
tives of trajectory;

• to describe the gauge symmetries of the model.

Solution: to study differential consequences of world sheet equation.

dk

dτk

[
(J − [x , p], J − [x , p])− ϱ2

]
= 0 , k = 0, 4. (19)

• solving this system with respect to p, J, we express them in terms of
derivatives of path;

• the consistency condition gives the equations of motion;

• the gauge symmetries are shifts along the world sheet.
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Geometry of light-like and time-like curves

For a time-like path x(τ) parameterised by the natural parameter such that
(ẋ , ẋ) = 1 the Frenet frame reads

T = ẋ , N =
ẍ√
(ẍ , ẍ)

, B =
[ẋ , ẍ ]√
(ẍ , ẍ)

. (20)

The Frenet formulas have the form:

Ṫ = κB , Ṅ = −κT + ωB , Ḃ = ωN. (21)

For a light-like path x(τ) parameterised by the natural parameter such that
(ẍ , ẍ) = 1 the Frenet frame reads,

T = ẋ , N = ẍ , B =
...
x +

1

2
(
...
x ,

...
x )ẋ . (22)

The Frenet formulas have the form:

Ṫ = B , Ṅ = −T + κB , Ḃ = κN. (23)

κ is the curvature, ω is the torsion.
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Time-like paths of massive particles

Expressions for p, J

p =
m√

z2 − 1

(
zT +

κ̇
κ2

1

3z + rω(z2 − 1)
N +

1

rκ
1

z2 − 1
B

)
; (24)

J = [x , p] +
sr

m

(
κ̇
κ2

1

3z + rω(z2 − 1)
B − 1

rκ
1

z2 − 1
N

)
. (25)

The solution uses z , being the common root of polynomials P(z), Q(z).

Dynamical equation

Auxiliary polynomials:

P(z) = r4κ4ω2z8 + . . . , Q(z) = 3r3κ4ωz8 + . . . ; (26)

EoM in implicit form:

Resz(P(z),Q(z)) = 0 . (27)
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Special case rκ, rω ≪ 1

Expressions for p, J

p = m

(
T + rκ

κ̈κω − 3̇κ2 − κ̇(2κ̇ω + κω̇)
4κ̇2 − 3κ̈κ

N

)
; (28)

J = [x , p] +
s

m

(
2r κ̇κω − 3rκ2ω̇ + 9κ3

4κ̇2 − 3κ̈κ
N + rκB

)
. (29)

The solution is well-defined if 4κ̇2 − 3κ̈κ ̸= 0 .

Dynamical equations

Auxiliary polynomials:

P(z) = 2κ2ωz3 + . . . , Q(z) = 4κ2ωz4 + . . . . (30)

EoM in implicit form:

Resz(P(z),Q(z)) = 0 . (31)
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Light-like paths of massive particles

Expressions for p, J

p = m(r
1
2
...
x + r−

1
2 ẋ); (32)

J = [x + r ẍ , p] + s(r
1
2
...
x + r−

1
2 ẋ) . (33)

Here, r is the cylinder radius.

Dynamical equation

κ =
1

r
(34)

The light-like cylindrical lines are helices with light-like tangent vector.

The model has been known previously Nersessian, Ramos, 1999; For d = 4
spacetime, see Nersessian, Ramos, 1998. The generalisation of the model
for higher dimensions is not known.

15 / 19



Time-like paths of continuous helicity particles

Expressions for p, J

p =
√

−sgn(σ)σκz
(
T − κ̇α

3κ2z − κω
N + zB

)
; (35)

J =

[
(x , p)2κz + σ

2
√

−sgn(σ)σκz
+

a+ ϱ

2

√
−κz

sgn(σ)σ

]
T + . . . , a = . . . (36)

The solution uses z , being the common root of polynomials P(z), Q(z).

Dynamical equations

P(z) = 9z3 + 9κ−2κ̇z2 + . . . , Q(z) = 9z4 + 6κ−2κ̇z3 + . . . . (37)

Resz(P(z),Q(z)) = 0 . (38)

Kaparulin, Lyakhovich, Retuntsev, 2022.
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Light-like paths of continuous helicity particles

Expressions for p, J

p =
√
σ
...
x ; (39)

J = −
√
σ

[
ẋ + (x ,

...
x )ẍ −

(
(x , ẍ) +

ϱ

2σ

)
...
x

]
. (40)

Dynamical equations

κ = 0 . (41)

The light-like paths on parabolic cylinder have zero curvature.

The construction does not work because the space of light-like paths has
higher dimension than the co-orbit.

Kaparulin, Lyakhovich, Retuntsev, 2022.
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What about massless particles?

The world sheets of massless particles are bi-planes:

(x , p)2 − a = 0 , a > 0. (42)

The set of bi-planes is parameterised by three parameters (2 for p and one
for a. So, the world sheet position keeps particular information about the
particle state.

• We have no isomorphism

World sheets ⇔ Co-orbit points . (43)

• Nevertheless, we can say that the spinning particle path are planar curves.
This fact has been observed in previous works, eg. Ramos, Roca, 1995;
Duval, Horvathy, 2015; Duval, Elbistan, Horvathy, Zhang, 2015.
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Conclusion and outlook

Results:

• It has been shown that the irreducible spinning particles can be considered
as geometrical objects (surfaces, lines). The topology of the surface is
determined by the representation.

• Considering the spinning particle trajectories as general lines on the world
sheet, we derived the geometrical equations of motion, and expressed mo-
mentum and total angular momentum in terms of derivatives of path.

• It has been shown that the trajectories of massless particles are planar
curves.

Further studies:

• Particles on gravitational or EM background.

• Massless particle trajectories.
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