# Commutative subalgebras in the $\hat{\mathfrak{g l}}_{1}$ Yangian and Matrix models 

A. Morozov, A. Mironov, A. Popolitov, V. Mishnyakov (LPI, MIPT)

## Introduction

- I would like to argue that the study of superintegrability in matrix models and it's relation to the $W$-representation leads to commutative subalgebras in the affine Yangian $Y\left(\mathfrak{g l}_{1}\right)$
- Outline:
- Review of the Gaussian matrix model and superintegrability
- $W$-operators and $\mathcal{W}_{1+\infty}$ algebra
- $\beta$-deformation, the commutative subalgebras in the Affine Yangian


## Matrix models

We deal with integrals of the following kind:

$$
Z\left(p_{k}\right)=\int D X \exp \left(-\operatorname{Tr} V(X)+\sum_{k=1}^{\infty} \frac{p_{k}}{k} \operatorname{Tr} X^{K}\right)
$$

Where $V(X)$ is some potential, and we include $p_{k}=k t_{k}$ - generating parameters for all invariant polynomials.

## Matrix models

MM posses various features, among those, important for us are:

- Set of Virasoro constraints

$$
L_{n} Z\left(p_{k}\right)=0, n \geq-1
$$

- Integrability - Hirota-like equations

$$
D_{p} \otimes D_{p^{\prime}}\left(Z\left(p_{k}\right) \otimes Z\left(p_{k}^{\prime}\right)\right)=0
$$

- Superintegrability:

$$
\langle\text { character }\rangle \sim \text { character }
$$

- $W$-representation - evolution in the space of couplings:

$$
Z\left(p_{k}\right)=e^{W} \cdot 1
$$

## Gaussian matrix model

- Correlators in the GHMM are given by integration over $N \times N$ Hermitian matrices,

$$
\langle\ldots\rangle=\int D X \exp \left(-\frac{1}{2} \operatorname{Tr} X^{2}\right) \ldots
$$

where normalization is included in the measure, i.e we choose $V(X)=-\frac{1}{2} \operatorname{Tr} X^{2}$.

- The partition function with times included is given by:

$$
Z_{N}^{\text {Gauss }}\left(p_{k}\right)=\int D X \exp \left(-\frac{1}{2} \operatorname{Tr} X^{2}+\sum_{k=1}^{\infty} \frac{p_{k}}{k} \operatorname{Tr} X^{K}\right)
$$

## Virasoro constrains

The partition function satisfies Virasoro constraints:

$$
\begin{gathered}
L_{n} Z_{N}^{\text {Gauss }}\left(p_{k}\right)=0, n \geq-1 \\
\left(-(n+2) \frac{\partial}{\partial p_{n+2}}+\sum(k+n) p_{k} \frac{\partial}{\partial p_{k+n}}+\sum_{a=1}^{n-1} a(n-a) \frac{\partial^{2}}{\partial p_{a} \partial p_{n-a}}+\right. \\
\left.+2 N n \frac{\partial}{\partial p_{n}}+N^{2} \delta_{n, 0}+p_{1}^{2} N \delta_{n-1}\right) Z_{N}^{\text {Gauss }}\left(p_{k}\right)=0
\end{gathered}
$$

In the Gaussian case the formal series solution of these equations is unique.

## Integrability of the GHMM

The partition function enjoys a determinant representation:

$$
\begin{gathered}
Z_{N}^{(\mu)}\left(p_{k}\right)=\operatorname{det}_{1 \leq i, j \leq N} M_{i+j-2}=\operatorname{det}_{1 \leq i, j \leq N}\left[\left(\frac{\partial}{\partial p_{1}}\right)^{i+j-2} M_{0}\right] \\
M_{i}:=\int d x \mu(x) x^{i} \exp \left(\sum_{k} \frac{p_{k}}{k} x^{k}\right)
\end{gathered}
$$

This guarantees that the partition function is a Toda chain $\tau$-function:

$$
Z_{N}^{(\mu)} \frac{\partial^{2} Z_{N}^{(\mu)}}{\partial p_{1}^{2}}-\left(\frac{\partial Z_{N}^{(\mu)}}{\partial p_{1}}\right)^{2}=Z_{N+1}^{(\mu)} Z_{N-1}^{(\mu)}
$$

## Superintegrabiltiy of the GHMM

- Computing correlators by Wicks theorem of by solving Virasoro constrains order by order is explicit but still complicated.
- Instead one has a general formula for a specific basis in the space of "observables":

$$
\left\langle\operatorname{Schur}_{R}\left(\operatorname{Tr} X^{k}\right)\right\rangle=\frac{\operatorname{Schur}_{R}\{N\}}{\operatorname{Schur}_{R}\left\{\delta_{k, 1}\right\}} \operatorname{Schur}_{R}\left\{\delta_{k, 2}\right\}
$$

Where Schur $_{R}$ are Schur functions, for example

$$
\operatorname{Schur}_{[2]}(p)=\frac{p_{2}}{2}+\frac{p_{1}^{2}}{2}, p_{k}=\operatorname{Tr} X^{k}
$$

The r.h.s are Schur functions evaluated at special points

$$
\frac{\operatorname{Schur}_{R}\left\{p_{k}=N\right\}}{\operatorname{Schur}_{R}\left\{p_{k}=\delta_{k, 1}\right\}}=\prod_{(i, j) \in R}(N+j-i)
$$

## Superintegrability

- One could think that this is a coincidence and a property of simple Gaussian integration.
- However the property holds for many different potentials and deformations:
- Non-gaussian models, such as higher monomial or logarithmic potentials
- Potentials with "external" matrices
- "Non-matrix" deformations of the measure such as the $\beta$ or ( $q, t$ )-deformation


## Superintegrability

- Let us give an example and introduce the $\beta$-deformation
- Recall that after integration over angular variables we have:

$$
Z\left(p_{k}\right)=\int \prod d x_{i} \Delta^{2}(x) \exp \left(-\sum_{i} V\left(x_{i}\right)\right)
$$

The $\beta$-deformation amounts to

$$
\Delta^{2}(x) \rightarrow \Delta^{2 \beta}(x)
$$

- Superintegrability for a logarithmic potential with $\beta$-deformation looks like

$$
\begin{array}{rl}
\int \prod d & d x_{i} \Delta(x)^{2 \beta} x_{i}^{u}\left(1-x_{i}\right)^{v} \operatorname{Jack}_{R}(x)= \\
& =\frac{\operatorname{Jack}_{R}(N) \operatorname{Jack}_{R}\left(\beta^{-1} u+N+\beta^{-1}-1\right)}{\operatorname{Jack}_{R}\left(\beta^{-1}(u+v+2)+2 N-2\right)}
\end{array}
$$

## W-representation

- The $W$-representation can be derived directly from the Virasoro constraints
- Sum up the Virasoro constrainst:

$$
0=\sum_{n} p_{n+2} L_{n} Z_{N}^{\text {Gauss }}\left(p_{k}\right)=\left(\sum_{k=1}^{\infty} k p_{k} \frac{\partial}{\partial p_{k}}-W_{-2}\right) Z_{N}^{\text {Gauss }}\left(p_{k}\right)
$$

- Equations is solved by an exponential, called the $W$-representation

$$
Z_{N}^{\text {Gauss }}\left(p_{k}\right)=e^{\frac{w_{-2}}{2}} \cdot 1
$$

- The operator $W_{-2}$ is explicit but somewhat lengthy.
- Such representation is also known for $\tau$-functions


## W-representation vs superintegrability

- Partition function admits a character expansion $\left(S_{R}=\operatorname{Schur}_{R}\right)$ :

$$
\begin{gathered}
\exp \left(\sum \frac{p_{k} \operatorname{Tr} X^{K}}{p_{k}}\right)=\sum_{R} S_{R}\left(p_{k}\right) S_{R}\left(\operatorname{Tr} X^{k}\right) \\
\Downarrow \\
Z\left(p_{k}\right)=\sum_{R}\left\langle S_{R}\left(\operatorname{Tr} X^{k}\right)\right\rangle S_{R}\left(p_{k}\right)=\sum_{R} \prod_{(i, j) \in R}(N+j-i) S_{R}\left\{\delta_{k, 2}\right\} S_{R}\left(p_{k}\right)
\end{gathered}
$$

- Can superintegrability can be deduced from Virasoro equations?
- A positive answer is provided using the $W$-representation. The key observation is:

$$
W_{-2} S_{R}=\sum_{Q:|Q|=|R|+2}\left(\prod_{(i, j) \in Q / R}(N+j-i)\right)\left\langle p_{2} S_{R} \mid S_{Q}\right\rangle
$$

- In general we should study operators with a proper action on Schur functions. The algebra of such operator is exactly the $W_{1+\infty}$ algebra.
- Before the algebra itself let's construct the following family of operators. Start with:

$$
W_{0}=\sum_{a, b} p_{a+b} \frac{\partial^{2}}{\partial p_{\mathrm{a}} \partial p_{b}}+p_{\mathrm{a}} p_{b} \frac{\partial}{\partial p_{a+b}}+N \sum p_{\mathrm{a}} \frac{\partial}{\partial p_{a}}, \quad E_{0}=p_{1}
$$

- Note that:

$$
W_{0} S_{R} \sim\left(\sum_{(i, j) \in R}(N+j-i)\right) S_{R}
$$

- Construct $E_{m} \sim[\underbrace{W_{0},\left[W_{0}, \ldots,\right.}_{m} E_{0}]]$ and

$$
H_{k}^{m} \sim[\underbrace{E_{m+1}, E_{m+1}, \ldots,}_{k} E_{m}]
$$

- The first claim is that constructed operators for fixed $m$ commute:

$$
\left[H_{k_{1}}^{m}, H_{k_{2}}^{m}\right]=0
$$

- The second claim is that their action on characters is given by:

$$
H_{k}^{m} S_{R}=\sum_{Q}\left(\prod_{(i, j) \in Q / R}(N+j-i)^{m}\right)\left\langle p_{k} S_{R} \mid S_{Q}\right\rangle,|Q|=|R|+k
$$

In particular:

$$
W_{-2}=H_{1}^{1}
$$

- One can generate the following partition functions (hypergeometric $\tau$-functions)

$$
Z_{N}^{m}(\bar{p}, p)=\exp \left(\sum_{k} \frac{\bar{p}_{k} H_{k}^{m}}{k}\right) \cdot 1=\sum_{R}\left(\prod_{(i, j) R}(N+j-i)^{m}\right) S_{R}(\bar{p}) S_{R}(p)
$$

## $W_{1+\infty}$ algebra

- The $W_{1+\infty}$ algebra is defined as a deformation of the 2 d diffeomorphism group, or the central extension of the algebra of differential operators on the circle $z^{m} \hat{D}^{n}$, where $D=z \frac{d}{d z}$ :

$$
\begin{aligned}
& {\left[W_{n}(P(\hat{D})), W_{m}(Q(\hat{D}))\right]=W_{n+m}(P(\hat{D}+m) Q(\hat{D})-P(\hat{D}) Q(\hat{D}+n))+} \\
& \quad+c \psi\left(W_{n}(P(\hat{D})), W_{m}(Q(\hat{D}))\right)
\end{aligned}
$$

- In terms of these "one-body" operators the commutativity looks especially simple:

$$
\hat{H}_{k}^{m}=W\left(\left(z D^{m}\right)^{k}\right)
$$

- We can obtain the time-variable/bosonic representation of the algebra via an explicit second quantization:

$$
W\left(z^{n} G(\hat{D})\right)=\oint \frac{d z}{2 \pi i} z^{n} \lim _{w \rightarrow z} G\left(\hat{D}_{w}\right)\left(\frac{1}{z-w}: e^{\phi(z)-\phi(w)}:-\frac{1}{z-w}\right)
$$

where the scalar field is defined as

$$
\begin{gathered}
\phi(z)=\sum_{k \geq 1}\left(\frac{\hat{a}_{k}^{\dagger}}{k} z^{-k}-z^{k} \hat{a}_{k}\right)+\hat{a}_{0}+\log (z) \hat{a}_{0}^{\dagger} \\
\hat{a}_{n}^{\dagger}=-p_{n}, \quad \hat{a}_{n}=-\frac{\partial}{\partial p_{n}}
\end{gathered}
$$

- This, along with the explicit iterative commutator formulas from above allows to rather efficiently calculate these operators for practical needs
- We have seen that commutative subalgebras in the $W_{1+\infty}$ algebra are in some sense responsible for matrix model superintegebility
- Is this commutativity a feature of representations? Can we prove it using a set of generators and relations?
- We can answer the last question even for more general operators corressponding to the $\beta$-deformation


## $\beta$-deformation of operators

- In terms of iterative formulas for $W$-operators the deformation is simple:

$$
\begin{aligned}
\hat{W}_{0}:= & \frac{1}{2} \sum_{a, b=1}\left(a b p_{a+b} \frac{\partial^{2}}{\partial p_{a} \partial p_{b}}+\beta(a+b) p_{a} p_{b} \frac{\partial}{\partial p_{a+b}}\right)+ \\
& +\beta N_{\beta} \sum_{a=1} a p_{a} \frac{\partial}{\partial p_{a}}+\frac{\beta N_{\beta}^{3}}{6}+\frac{1-\beta}{2} \sum_{a} a(a-1) p_{a} \frac{\partial}{\partial p_{a}}
\end{aligned}
$$

where $N_{\beta}=N+(\beta-1) / 2 \beta$

- Constructed operators now act on Jack polynomials. For example, relevant for the $\beta$-deformed GHMM:

$$
H_{1}^{1, \beta} J_{R}=\sum_{Q:|Q|=|R|+2}\left(\prod_{(i, j) \in Q / R}(\beta N+j-i \beta)\right)\left\langle p_{2} J_{R} \mid J_{Q}\right\rangle
$$

## Affine Yangian

- However, now the commutation relations between generic operators are more complicated. In particular the is no one body representation
- The relevant algebra is the affine Yangian $Y\left(\hat{\mathfrak{g}}_{1}\right)$ (for reduced set of parameters)
- This algebra is defined [A. Tsymbaliuk (2017), T. Prochazka (2016)] by a set of generators and relations. $\Psi_{i}, F_{i}, E_{i}, i \in \mathbb{Z}_{\geq 0}$ :

$$
\begin{aligned}
& {\left[\hat{\Psi}_{j}, \hat{\Psi}_{k}\right]=0} \\
& {\left[\hat{E}_{j}, \hat{F}_{k}\right]=\hat{\Psi}_{j+k}} \\
& {\left[\hat{\Psi}_{0}, \hat{E}_{j}\right]=0, \quad\left[\hat{\Psi}_{0}, \hat{F}_{j}\right]=0} \\
& {\left[\hat{\Psi}_{1}, \hat{E}_{j}\right]=0, \quad\left[\hat{\Psi}_{1}, \hat{F}_{j}\right]=0} \\
& {\left[\hat{\Psi}_{2}, \hat{E}_{j}\right]=2 \hat{E}_{j}, \quad\left[\hat{\Psi}_{2}, \hat{F}_{j}\right]=-2 \hat{F}_{j}}
\end{aligned}
$$

- Quadratic relations:

$$
\begin{aligned}
& {\left[\hat{E}_{j+3}, \hat{E}_{k}\right]-3\left[\hat{E}_{j+2}, \hat{E}_{k+1}\right]+3\left[\hat{E}_{j+1}, \hat{E}_{k+2}\right]-\left[\hat{E}_{j}, \hat{E}_{k+3}\right]-} \\
& -\left[\hat{E}_{j+1}, \hat{E}_{k}\right]+\left[\hat{E}_{j}, \hat{E}_{k+1}\right]=\left(\sigma_{3}\left\{\hat{E}_{j}, \hat{E}_{k}\right\}-\sigma_{2}\left[\hat{E}_{j+1}, \hat{E}_{k}\right]+\sigma_{2}\left[\hat{E}_{j}, \hat{E}_{k+1}\right]\right)
\end{aligned}
$$

$$
\left[\hat{\Psi}_{j+3}, \hat{E}_{k}\right]-3\left[\hat{\Psi}_{j+2}, \hat{E}_{k+1}\right]+3\left[\hat{\Psi}_{j+1}, \hat{E}_{k+2}\right]-\left[\hat{\Psi}_{j}, \hat{E}_{k+3}\right]-
$$

$$
-\left[\hat{\Psi}_{j+1}, \hat{E}_{k}\right]+\left[\hat{\Psi}_{j}, \hat{E}_{k+1}\right]=\ldots
$$

- Cubic (the Serre relations)

$$
\operatorname{Sym}_{i, j, k}\left[\hat{E}_{i},\left[\hat{E}_{j}, \hat{E}_{k+1}\right]\right]=0
$$

- Similar relatios for $F$
- The affine Yangian is a 2-parametric family. $\beta$ deformation corresponds to $\sigma_{2}=-1-\beta(\beta-1), \sigma_{3}=-\beta(\beta-1)$
- We can prove that commutativity of subalgebras:

$$
H_{k}^{m}=\operatorname{ad}_{E_{m+1}}^{k+1} E_{m}
$$

is indeed not just a feature of representation.

- Note, that the proof only uses Serre relations (which are independent of parameters) and Jacobi identities, so it is true for generic parameters in the Yangian
- Everything works for the $F$ counterparts


## Concluding remarks

- Superintegrability of matrix models it closely related with commutative subalgebras in the $W_{1+\infty}$ and $Y\left(\hat{\mathfrak{g}}_{1}\right)$ algebras
- We gave an explicit description of these algebras in terms of iterative commutators, their respective one body operators and their action on Schur/Jack functions
- Commutative subalgebras should correspond to integrable systems. Indeed one can represent each subalgebra as many-body operators. More in Andrei Mironov's lectures.

Further directions:

- I omitted the so-called rational rays, with one-body form: $\left(z^{ \pm q} G(\hat{D})\right)^{k}$. These are more commutative subalgebras in $W_{1+\infty}$. It is unclear how the uplift them to the Yangian
- Matrix modes for all subalgebras. For the first family $H_{k}^{1}$ they are known as WLZZ matrix models.

