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Introduction

e | would like to argue that the study of superintegrability in matrix
models and it's relation to the W-representation leads to
commutative subalgebras in the affine Yangian Y(gl;)

e Outline:
o Review of the Gaussian matrix model and superintegrability

e W-operators and Wi algebra

e (-deformation, the commutative subalgebras in the Affine Yangian



Matrix models

We deal with integrals of the following kind:

Z(px) = / DX exp (— Tr V(X) + i p—kk Ter)

Where V/(X) is some potential, and we include py = ktx - generating
parameters for all invariant polynomials.



Matrix models

MM posses various features, among those, important for us are:

e Set of Virasoro constraints

L,Z(p) =0,n>—1
e Integrability - Hirota-like equations

Dy ® Dy (Z(pk) ® Z(pi)) =0

e Superintegrability:

(character) ~ character
o W-representation - evolution in the space of couplings:

Z(pe)=e" -1



Gaussian matrix model

e Correlators in the GHMM are given by integration over N x N
Hermitian matrices,

(...) :/DXexp (—;TrX2)

where normalization is included in the measure, i.e we choose

V(X) = f%Ter.

e The partition function with times included is given by:

1 (oo}
75255 (p, ) = / DX exp (-2 X2+ Y pr TrXK>
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Virasoro constrains

The partition function satisfies Virasoro constraints:

L,Z5"(pk) = 0,n > —1
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In the Gaussian case the formal series solution of these equations is
unique.



Integrability of the GHMM

The partition function enjoys a determinant representation:

op1

M; = /dxu x)x' exp (Z i k)

This guarantees that the partition function is a Toda chain 7-function:
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Superintegrabiltiy of the GHMM

e Computing correlators by Wicks theorem of by solving Virasoro
constrains order by order is explicit but still complicated.

e Instead one has a general formula for a specific basis in the space of
"observables”:

(Schurg (Tr X¥)) = —chure AN}

= _————-S5ch
SchurR {5k,1} S urr {6[(’2}

Where Schurg are Schur functions, for example

P2 P2
Schur[Q](p) = 5 + 71 , Pk = Tr XX

The r.h.s are Schur functions evaluated at special points

Schurg {px = N}
SchurR {pk = 5/(’1}
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Superintegrability

e One could think that this is a coincidence and a property of simple
Gaussian integration.

e However the property holds for many different potentials and

deformations:

e Non-gaussian models, such as higher monomial or logarithmic
potentials

e Potentials with "external” matrices

e "Non-matrix” deformations of the measure such as the 3 or
(g, t)-deformation



Superintegrability

e Let us give an example and introduce the S-deformation

e Recall that after integration over angular variables we have:

pk):/de,-A2 exp( ZVX,)
The [-deformation amounts to
A%(x) = AP ()

e Superintegrability for a logarithmic potential with 5-deformation
looks like

/de, ) x4 (1 — x;)" Jackp(x) =

_JackR(N) Jackg(B~tu+ N+ 571 —1)
— Jackg(BY(u+ v +2) +2N - 2)




W-representation

The W-representation can be derived directly from the Virasoro
constraints

Sum up the Virasoro constrainst:

> 0
0= prialaZ§(pi) = (Z ki - = W2> Z3?"*(pk)
n k=1

Equations is solved by an exponential, called the W-representation

W_2

Z5s(p ) =ez -1

e The operator W_, is explicit but somewhat lengthy.

Such representation is also known for 7-functions



W-representation vs superintegrability

e Partition function admits a character expansion (Sg = Schurg):

o (3 ”LXK) = 3 SalpS(Te X"

Y
Z(pk) = Z<5R(T"X )) Sr(Pk) Z H (N +j— 1) Sr{dk2}Sr(Pk)

R R (ij)eR
e Can superintegrability can be deduced from Virasoro equations?

e A positive answer is provided using the W-representation. The key
observation is:

W_»5g = Z ( H (N+j—i)) <P25R‘SQ>

Q:|QI=IR[+2 \(i./)eQ/R



In general we should study operators with a proper action on Schur
functions. The algebra of such operator is exactly the Wi
algebra.

Before the algebra itself let's construct the following family of
operators. Start with:
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e The first claim is that constructed operators for fixed m commute:
[Hi Higl =0

e The second claim is that their action on characters is given by:

rse=>"| TI (W+i—0" ) (pSa|Sa). 10l = IRl + &
Q@ \(ij)eQ/R

In particular:
W_p = Hi

e One can generate the following partition functions (hypergeometric
7-functions)

Zi(p, p) = exp (Z ﬁk?) 1= | [T(N+j=)" | Sr(P)Sr(p)

R \GHR



Wi . o algebra

e The Wi, algebra is defined as a deformation of the 2d

diffeomorphism group, or the central extension of the algebra of
differential operators on the circle z”D", where D = z%:

N

[Wa(P(D)), W QD)) | = Wain(P(D + m)Q(D) — P(D)QD + ) ) +

rev (Wn(PO0) wn(@()))

e In terms of these "one-body” operators the commutativity looks
especially simple:

Am = w ((sz)k)



e We can obtain the time-variable/bosonic representation of the
algebra via an explicit second quantization:

W (Z"G(D)) _ % %Z" lim G(éw) ( 1 ce?(@)—o(w) . _ 1

w—z Z—Ww zZ—Ww

where the scalar field is defined as

5t
o(z) = Z (kkz_k -z ak> + 4o + log(z )

3l = —p, 4n=-— 0
Opn
e This, along with the explicit iterative commutator formulas from

above allows to rather efficiently calculate these operators for
practical needs




e We have seen that commutative subalgebras in the Wi, algebra
are in some sense responsible for matrix model superintegebility

e Is this commutativity a feature of representations? Can we prove it
using a set of generators and relations?

e We can answer the last question even for more general operators
corressponding to the S-deformation



[-deformation of operators

e In terms of iterative formulas for W-operators the deformation is
simple:
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where Ng = N+ (8 —1)/28

e Constructed operators now act on Jack polynomials. For example,
relevant for the S-deformed GHMM:

HPr= > | TI (6N+i=i8)| (p2Jr|da)

Q:|Q|=|R|+2 \(ij)EQ/R



Affine Yangian

e However, now the commutation relations between generic operators
are more complicated. In particular the is no one body
representation

o The relevant algebra is the affine Yangian Y(gl;) (for reduced set of
parameters)

e This algebra is defined [A. Tsymbaliuk (2017), T. Prochazka (2016)]
by a set of generators and relations. W;, F;, E;, i € Z>q:
[¥;, ¥,] =0
[Eja ﬁk] = ‘T’j+k
[Wo.E]=0, [¥,F]=0
W, El=0, [¥,FA]=0
(W2, ] = 26, [¥2, F] = —2F;



e Quadratic relations:
[Ej+3, Ex] = 3[Ej+2, Eicia] + 3141, Eicva] — [E, Enss]—
—[Eji1, B + [, Biin] = ((73{57 E} — oolEjia, B + o0lEj, Ek+1])

(W13, ] = 3[Wj12, Exia] + 3[Wji1, Exra] — [U), Exis]—
— Wjin, B+ [V, Ea] =

o Cubic (the Serre relations)
Symi,j,k[éiv [Ejv ék+1]] =0

e Similar relatios for F

e The affine Yangian is a 2-parametric family. 5 deformation
corresponds to 0, = —1 — (8 — 1), 03 = —B(8 — 1)



e We can prove that commutativity of subalgebras:
k+1
H = adE::+1 E.
is indeed not just a feature of representation.

o Note, that the proof only uses Serre relations (which are
independent of parameters) and Jacobi identities, so it is true for
generic parameters in the Yangian

e Everything works for the F counterparts



Concluding remarks

e Superintegrability of matrix models it closely related with
commutative subalgebras in the Wy, and Y(gl;) algebras

e We gave an explicit description of these algebras in terms of iterative
commutators, their respective one body operators and their action
on Schur/Jack functions

e Commutative subalgebras should correspond to integrable systems.
Indeed one can represent each subalgebra as many-body operators.
More in Andrei Mironov's lectures.

Further directions:

e | omitted the so-called rational rays, with one-body form:

.\ K
(zqu(D)) . These are more commutative subalgebras in Wi .
It is unclear how the uplift them to the Yangian

e Matrix modes for all subalgebras. For the first family H,} they are
known as WLZZ matrix models.



