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Partition function of Chern-Simons on S3

Partition function of CS on S3 (Witten, 1989):

Z (k) = Vol(Q∨)−1(k + h∨)−
r
2
∏
α+

2 sinπ
(α, ρ)

k + h∨ (1)

Z (0) = 1

Vol(Q∨) is the volume of the fundamental domain of the coroot lattice Q∨, the integer
k is the CS coupling constant, h∨ is the dual Coxeter number of the algebra, r is the
rank of the algebra, the product is taken over all positive roots α+.
In an arbitrary normalization of the scalar product:

Z (κ) = Vol(Q∨)−1(δ)−
r
2
∏
α+

2 sinπ
(α, ρ)

δ

where k is now replaced by κ, h∨ by t , and δ = κ+ t . In this form the r.h.s. is invariant
w.r.t. the simultaneous rescaling of the scalar product, κ, and t (and hence δ). In the
minimal normalization, by definition, they accept their usual values in (1).
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Equality Z (0) = 1 is the Kac-Peterson (1984) identity, expressing the determinant of
symmetrized Cartan matrix in terms of product of sines over positive roots:

Vol(Q∨) = (det(α∨
i , α∨

j ))1/2

α∨
i = αi

2
(αi , αi )

, i = 1, ..., r

Vol(Q∨) = t−
r
2
∏
α+

2 sinπ
(α, ρ)

t

For AN−1 algebras this equality can be easily proved with the use of the following
well-known identity, valid at an arbitrary positive integer N:

N =

N−1∏
k=1

2 sinπ
k
N

It can be checked for all other root systems, too.
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We suggested (Avetisyan, RM, 2021) the following expression for the partition function
of the refined CS theory with an arbitrary simple gauge group:

Z (κ, y) = Vol(Q∨)−1δ−
r
2

y−1∏
m=0

∏
α+

2 sinπ
y(α, ρ)− m(α, α)/2

δ

Now δ = κ+ yt , y is the refinement parameter, which we consider to be a positive
integer at this stage.
Key identity Z (0, y) = 1 still holds, which is ensured by the following generalization of
the Kac-Peterson formula for the same object Vol(Q∨):

Vol(Q∨) = (ty)−
r
2

y−1∏
m=0

∏
α+

2 sinπ
y(α, ρ)− m(α, α)/2

ty
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Initial Macdonald’s deformation of simple Lie algebras involves one parameter of
deformation for each length of the roots of the algebra. So for an B, C, F, G algebras it
can be two deformation (i.e. refinement) parameters. We suggested (MA, RM 2023)
the two-fold refinement of the partition function of CS theory on the sphere. It is based
on the following two-fold refinement of Kac-Peterson formula:

Vol(Q∨) = (k̃)−
r
2
∏
α+

kνα−1∏
m=0

2 sinπ
ks(ρs, α) + kl (ρl , α)− m(α, α)/2

k̃

k̃ = ks(ρs, θ) + kl (ρl , θ) + kl
(θ, θ)

2

with θ the maximal root, ks, kl are integer refinement parameters for short and long
roots, respectively.
Corresponding two-fold refined partition function of CS theory on the sphere is:

Z (κ, ks, kl ) = Vol(Q∨)−1δ−
r
2
∏
α+

kνα−1∏
m=0

sinπ
ks(ρs, α) + kl (ρl , α)− m(α, α)/2

δ

with δ = κ+ k̃ .
Again, Z (0, ks, kl ) = 1, due to generalized KP identity.
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These formulae lead to:

the duality of refined CS theories (currently carried out for single-refined theories,
only, due to complexity of calculations).

the correct definition of constant maps contribution, and to the trebling of Kähler
parameter, due to quantum shifts.

the description of the conifold singularity by refined group volume formulae.
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Transformation of partition function into general values of arguments:

Z (κ, y) =
(

ty
δ

) r
2

y−1∏
m=0

∏
α+

sinπ y(α,ρ)−m(α,α)/2
δ

sinπ y(α,ρ)−m(α,α)/2
ty

sinπz
πz

=
1

Γ(1 + z)Γ(1 − z)

and make use of the integral representation of (the logarithm of) the Γ function:

ln Γ(1 + z) =
∫ ∞

0
dx

e−zx + z(1 − e−x )− 1
x(ex − 1)
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lnZ = −
1
4

∫
R+

dx
x

sinh (x(ty − δ))

sinh (xty) sinh (xδ)
FX (2x , y)

FX (x , y) = r +
y−1∑
m=0

∑
α+

(
ex(y(α,ρ)−m(α,α)/2) + e−x(y(α,ρ)−m(α,α)/2)

)

For example, for the simply-laced algebras (ADE) one have (Krefl, Schwartz, 2013;
Avetisyan, RM, 2021)

F (x , y) =
sinh(x α−2ty

4 )

sinh(x α
4 )

sinh(xy β−2t
4 )

sinh(xy β
4 )

sinh(xy γ−2t
4 )

sinh(xy γ
4 )

where α, β, γ are numbers, Vogel’s parameters, characterizing gauge group. At y = 1
this coincides with (B.Westbury, 2004).
The advantage of this representation is that it allows one to express the partition
function in terms of multiple sine functions.
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Simplest example: partition function of refined SU(N) CS on S3:

ZA(N, y , δ) =

√
δ

yN
S3(1 + yN|1, y , δ)

S3(y |1, y , δ)
,

This expression includes contribution of Riemann surfaces (S3 of numerator), and
constant maps (denominator S3, independent of N).

lnSr (z|ω) = (−1)r

(
1
2

∮
dx
x

ezx∏r
k=1(eωi x − 1)

+

∫
R+

dx
x

ezx∏r
k=1(eωi x − 1)

)
.
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The expression for SO(N) algebras of type D (i.e., even N) can be written in terms of
multiple sine functions as (Krefl. Schwartz, 2013; Krefl, RM, 2015):

ZD =
1
√

2

S3(1 + ay |1, 2y , δ)
S3(y |1, 2y , δ)S2(2 − y + ya|2, 2δ)

,

with a = N − 1
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For C type algebras partition function is derived to be (Avetisyan, RM, 2022):

ZC =
S3(1 + ya|1, 2y , 2δ)

S3(y |1, 2y , 2δ)
S2(2 − y + ya|2, 4δ)
S2(2 − y + ya|2, 2δ)

,

with a = N + 1. The analytic derivation of the above ZC is far more involved than the
previous cases. We numerically confirm our analytic derivation.
Finally, for the remaining case of SO(N) group with odd N, i.e., the B series, we have
(Avetisyan, RM 2022):

ZB =
1
2

S3(1 + ay |1, 2y , δ)
S3(1|1, 2y , δ)

1
S2(y(a + 1)/2|y , δ)

×
S3(y + ay |1, 2y , 2δ)
S3(1 + ay |1, 2y , 2δ)

S3(1|1, 2y , 2δ)
S3(1 + y |1, 2y , 2δ)

,

with a = N − 1. As for the previous cases, we numerically verified this result.
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The expressions for D and C partition functions most suitable for a topological string
interpretation can be obtained from the initial expressions by the multiple sines
manipulations:

ZD =
1
√

2

√
S3(1 + ya|1, y , δ)√

S3(y |1, y , δ)
×√

S3(y |1, y , δ)
S3(y |1, 2y , δ)

S3(2 + ya|1, 2y , δ)S2(1 + ya|2y , δ)√
S3(1 + ya|1, y , δ)

√
S2(2 − y + ya|2, δ)

×√
S2(2 − y + ya|2, δ)

S2(2 − y + ya|2, 2δ)
,

ZC =

√
S3(1 + ya|1, y , δ̄)√

S3(y |1, y , δ̄)
×

√
S3(y |1, y , δ̄)

S3(y |1, 2y , δ̄)
S3(2 + ya|1, 2y , δ̄)S2(1 + ya|2y , δ̄)√

S3(1 + ya|1, y , δ̄)
√

S2(2 − y + ya|2, δ̄)
×

S2(2 − y + ya|2, 2δ̄)√
S2(2 − y + ya|2, δ̄)

,

where in the C case we introduced δ̄ := 2δ.
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The similar form of the partition function for B:

ZB =
1
2

√
S3(1 + ya|1, y , δ)√

S3(y |1, y , δ)
×√

S3(y |1, y , δ)
S3(1|1, 2y , δ)

S3(1|1, 2y , 2δ)
S3(1 + y |1, 2y , 2δ)

×√
S3(1 + ya + δ|1, 2y , 2δ)√

S3(1 + ya|1, 2y , 2δ)

√
S3(y + ay + 1|1, 2y , 2δ)√

S3(1 + y + ay + δ|1, 2y , 2δ)
.
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Gopakumar-Vafa type expansions (Avetisyan, RM, 2022) are:

FA =
1
2

∞∑
n=1

e
gs
2 n(1+2ay−y)

n(e
gs
2 n − e− gs

2 n)(e
gs
2 ny − e− gs

2 ny )
=

1
2

∞∑
n=1

eτ0n

n(qn − q−n)(tn − t−n)
,

q = e
gs
2 , t = e

gs
2 y , τ0 =

gs

2
(1 + 2ay − y) = gsay +

gs

2
(1 − y) ,

the non-orientable surfaces contribution for D type reads

∑
n=1,3,...

1
n

e
1
2 τ1n

(qn − q−n)
,

τ1 = gs(1 + ay − y) ,

and the same with opposite overall sign for the C case. The remaining, coinciding,
terms in the D and C partition functions (2), (2) can be rewritten as

∑ 1
2n

qn

tn − tn

qn

(q2n − q−2n)(tn + t−n)
eτ2n

τ2 = (1 + 2ay − 2y)
gs

2
This expression is even over gs , provided τ2 is invariant, and can therefore be
interpreted as a contribution of a Klein bottle with handles, since the Euler
characteristics of such surfaces is even. Note that in the non-refined case there is no
such contribution, accordingly, this expression becomes zero at y = 1.
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In summary, we observe that the single Kähler parameter τ = ags of the non-refined
case appears to treble into three parameters after refinement, i.e.,

τ0 = (1 + 2ay − y)
gs

2
= yτ +

1
2
(1 − y)gs

τ1 = (1 + ay − y)gs = yτ + (1 − y)gs

τ2 = (1 + 2ay − 2y)
gs

2
= yτ +

1
2
(1 − 2y)gs

τ = ags

for orientable, non-orientable with one cross-cup (i.e. odd Euler characteristics), and
non-orientable with two-crosscups (Klein bottles, even Euler characeristics) surfaces,
respectively.
Independent confirmation of these conclusions should come from microscopic theory
of refined strings, which is absent (see C. Angelantonj, I. Antoniadis, I. Florakis and H.
Jiang, Refined topological amplitudes from the Ω-background in string theory, (2022))
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For the B type theory we have the same refined A type terms, which correspond to the
contributions of Riemannian surfaces, i.e., orientable surfaces with handles. The GV
type expansion of the remaining terms (except constant maps) is:

∑
n=1,3,...

1
n

e
1
2 τ

B
1 n

(qn/2 − q−n/2)(tn/2 + t−n/2)
,

τB
1 = gs(ya − y

1
2
+

1
2
) = yτ +

1
2
(1 − y)gs .

This is the deformed version of the one-cross-cup term of the non-refined SO theory. It
is odd w.r.t. the string coupling gs , provided τB

1 is unchanged. Note that the
deformation τB

1 is different from τ1 in the D (and C) cases. We conclude that in the B
case there is no Klein bottle contribution, as in the non-refined case. The initial Kähler
parameter τ is shifted for Riemannian surfaces and for unorientable one cross-cup
surfaces as follows:

τB
0 = (1 + 2ay − y)

gs

2
= yτ +

1
2
(1 − y)gs ,

τB
1 = gs(ya − y

1
2
+

1
2
) = yτ +

1
2
(1 − y)gs ,

τ = ags .

We conclude that for the B case the shifts are identical, i.e., τB
0 = τB

1 . Taking into
account the absence of Klein bottles contribution, we see that refined B case is very
close to the unrefined D case.
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Refined constant maps

√
S3(y |1, y , δ)

S3(y |1, 2y , δ)

The perturbative poles contribution in this expression is as follows:

1
2

∞∑
n=1

( t
q )

n

n(qn − q−n)(tn + t−n)

This term is neither even, nor odd over the coupling constant gs (gs → −gs is
equivalent to q → 1/q, t → 1/t). It remains non-zero in the limit y = 1 (q = t):

1
2

∞∑
n=1

1
n(q2n − q−2n)

However, the initial expression in the same limit y = 1 is

√
S3(y |1, y , δ)

S3(y |1, 2y , δ)
=

1√
S2(1|2, δ)

= 2− 1
4

so its expansion should be zero. This happens since perturbative and non-perturbative
terms cancel, due to modular properties of functions.
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To handle this ambiguity, we suggest (Avetisyan, RM, 2022) to rewrite all terms
corresponding to the constant maps in a "modularity-neutral" form, i.e. as follows:

Sr (z|w) =

√
S2

r =

√
Sr (z|w)Sr (|w | − z|w)(−1)r+1

The refined constant maps term in above, corresponding to the Riemann surfaces (i.e.
orientable worldsheets), in GV form will contribute by the following expression:

lnS3(y |1, y , δ) = ln
√

S3(y |1, y , δ)S3(1 + δ|1, y , δ) ∼

−
1
2

∑ 1
n

qn

tn + tn

qn

(qn − q−n)(tn − t−n)

q = e
gs
2 , t = e

gsy
2

This expression has the same limit in unrefined case at y = 1, however, it is explicitly
even w.r.t. the string coupling gs .
Without our recipe, the initial constant maps term S3(y |1, y , δ) of refined A theory
leads to the expansion below, which, to be even in string coupling, require invariance
w.r.t. the y → 1/y , gs → ygs , which exists in the A case, only.

1
2

∞∑
n=1

e−ngs(1−y)/2

n sinh
( ngs

2

)
sinh

( nygs
2

) ,
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Next, consider the new form of the constant maps term for the refined D theory:

ln

√
S3(y |1, y , δ)

S3(y |1, 2y , δ)
∼

ln

√√
S3(y |1, y , δ)S3(1 + δ|1, y , δ)√

S3(y |1, 2y , δ)S3(1 + y + δ|1, 2y , δ)
∼

−
1
4

∑ 1
n

qn

tn − tn

qn

(qn − q−n)(tn + t−n)

Remarkably, this expression is even in gs , which allows us to assume that it
corresponds to the constant maps term of a two cross-cup non-orientable worldsheet
contribution.
Consider remaining constant maps terms, namely those in B case, two fractions. They
are

ln

√
S3(y |1, y , δ)

S3(1|1, 2y , δ)
∼
∑
n=1

tn

qn − qn

tn

4n (qn − q−n) (t−n + tn)

ln
S3(1|1, 2y , 2δ)

S3(1 + y |1, 2y , 2δ)
∼ −

∑
n=1

tn/2

qn/2 − qn/2

tn/2

2n
(

qn/2 − q− n
2

)(
t−

n
2 + t

n
2

)
so the sum of these two terms is the sum over odd n :
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ln

√
S3(y |1, y , δ)

S3(1|1, 2y , δ)
S3(1|1, 2y , 2δ)

S3(1 + y |1, 2y , 2δ)
∼

−
∑

n=1,3,...

tn/2

qn/2 − qn/2

tn/2

2n
(

qn/2 − q− n
2

)(
t

n
2 + t−

n
2

)
We see, that the answer is even w.r.t. the string coupling, so we assume that it again is
coming from Klein bottles, representing their refined constant maps contribution on
orientifolded resolved conifold. At y = 1 this expression is zero, as it should.
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String coupling and Kähler parameter expansions

∞∑
n=1

eτn

n(qn − q−n)(tn − t−n)
,

with
q = e

gs
2 , t = e

gs
2 y , τ =

gs

2
(1 + 2ay − y) ,

1
ex − e−x

=
∞∑

n=0

(1 − 22n−1)

(2n)!
B2nx2n−1

∞∑
n=1

1
n

eτn

(qn − q−n)(tn − t−n)
=

∞∑
g=0

(
gs

2
)2g−2

∞∑
n=1

(
n2g−3eτn

) g∑
p=0

1 − 22g−2p−1

(2g − 2p)!
B2g−2p

1 − 22p−1

(2p)!
B2py2p−1 =

∞∑
g=0

F 0
g (

gs

2
)2g−2
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Conifold singularity

∞∑
n=1

nk enτ =
(−1)k+1k!

τ k+1
−

∞∑
m=k+1

1
m(m − k − 1)!

Bmτm−k−1, k > 0

F 0
g>1 =

(
(2g − 3)!
τ2g−2

−
∞∑

k=0

1
(2g + 2k − 2)(2k)!

B2g+2k−2τ
2k

)
×

g∑
p=0

1 − 22g−2p−1

(2g − 2p)!
B2g−2p

1 − 22p−1

(2p)!
B2py2p−1

∞∑
n=1

1
n

eτn

(qn − q−n)(tn − t−n)
∼

∞∑
g=0

(
gs

2τ
)2g−2(2g − 3)!

g∑
p=0

1 − 22g−2p−1

(2g − 2p)!
B2g−2p

1 − 22p−1

(2p)!
B2py2p−1
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Conifold singularity

Natural conifold limit:

τ → 0, gs → 0,
gs

τ
= const

Partition function at conifold singularity (differs from D.Krefl and J.Walcher, 2012), (MA,
RM, in preparation):

lnZ ∼
∫ ∞

0

dx
x

(
FX (

x
δ
)− dim(y)

)
−
∫ ∞

0

dx
x

(
FX (

x
ty

)− dim(y)
)

δ = 1/gs

→ −
∫ ∞

0

dx
x

(
FX (

x
ty

)− dim(y)
)

∼ ln(VolG(y))

This is refined volume of groups, to be studied.
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Thanks!
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