Non-linear spin multiplet $(\mathbf{3}, 4,1)$

```
Stepan Sidorov (BLTP JINR, Dubna)
```

RDP School and Workshop on Mathematical Physics
Yerevan Physics Institute
August 19-24, 2023

In collaboration with Evgeny Ivanov

- $\mathcal{N}=4, d=1$ supersymmetry
- Harmonic superspace construction
- Linear mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$
(2) Non-linear mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$
- WZ action
- Dirac brackets
- Sphere S^{2}
(3) Coupling to chiral superfields
- From plane to squashed sphere
- Interaction

Summary and outlook

Introduction

- Coupling of dynamical and semi-dynamical multiplets was proposed by S. Fedoruk, E. Ivanov, O. Lechtenfeld, Phys. Rev. D 79 (2009) 105015. This idea provided harmonic superfield construction of $\mathcal{N}=4$ extension of Calogero system with the additional spin (isospin) degrees of freedom z^{i}, \bar{z}_{j}.
- This work was followed by a further study of "spinning" models considering couplings of dynamical and semi-dynamical multiplets (S. Bellucci, S. Krivonos, A. Sutulin, Phys. Rev. D 81 (2010) 105026, S. Krivonos, O. Lechtenfeld, A. Sutulin, Phys. Rev. D 81 (2010) 085021, E. Ivanov, M. Konyushikhin, A. Smilga, JHEP 1005 (2010) 033, E. Ivanov, M. Konyushikhin, Phys. Rev. D 82 (2010) 085014, etc). Most of them considered the multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ as a semi-dynamical.
- The multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ as a semi-dynamical multiplet interacting with the dynamical multiplet $(\mathbf{1}, \mathbf{4}, \mathbf{3})$ was considered by S. Fedoruk, E. Ivanov, O. Lechtenfeld, JHEP 1206 (2012) 147. They showed that the triplet of spin variables $v^{i j}$ describes a 2 dimensional surface in \mathbb{R}^{3}.
- Recently, we considered the interaction of the semi-dynamical mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ with dynamical mirror multiplets (E. Ivanov, S. S., Phys. Rev. D 105 (2022) 086027). We reproduced the model mentioned above, but in terms of mirror superfields.
- We constructed, for the first time, the coupling of the semi-dynamical mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ to the dynamical mirror multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ described by the chiral superfield Z. The corresponding interaction term was constructed as a superpotential in the chiral subspace.
- Our goal is to consider the non-linear mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ as a spin multiplet. As a generalization of the linear case the triplet of spin variables $v^{\alpha \beta}$ describes a 2 dimensional surface in S^{3}.

$\mathcal{N}=4, d=1$ supersymmetry

The standard $\mathcal{N}=4, d=1$ superalgebra:

$$
\begin{equation*}
\left\{Q_{\alpha}^{i}, Q_{j}^{\beta}\right\}=2 \delta_{j}^{i} \delta_{\alpha}^{\beta} H \tag{1}
\end{equation*}
$$

Supercharges Q_{α}^{i} carry fundamental indices $(i=1,2$ and $\alpha=1,2)$ of the automorphism group $\operatorname{SO}(4) \sim$ $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$. The superspace is

$$
\begin{equation*}
\zeta:=\left\{t, \theta^{i \alpha}\right\} \tag{2}
\end{equation*}
$$

and transforms as

$$
\begin{equation*}
\delta \theta^{i \alpha}=\epsilon^{i \alpha}, \quad \delta t=-i \epsilon^{i \alpha} \theta_{i \alpha}, \quad \overline{\left(\theta^{i \alpha}\right)}=-\theta_{i \alpha}, \quad \overline{\left(\epsilon^{i \alpha}\right)}=-\epsilon_{i \alpha} \tag{3}
\end{equation*}
$$

The covariant derivatives are

$$
\begin{equation*}
D^{i \alpha}=\frac{\partial}{\partial \theta_{i \alpha}}+i \theta^{i \alpha} \partial_{t} \tag{4}
\end{equation*}
$$

The multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ is described by a triplet superfield $\mathcal{V}^{i j}$ satisfying

$$
\begin{equation*}
D_{\alpha}^{(k} \mathcal{V}^{i j)}=0 \tag{5}
\end{equation*}
$$

Harmonic superspace construction

The multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ can be described by a harmonic superfield \mathcal{V}^{++}that lives on the analytic harmonic superspace $\zeta_{(\mathrm{A})}$ (E. Ivanov, O. Lechtenfeld, JHEP 0309 (2003) 073). The superfield satisfies the analyticity constraints:

$$
\begin{equation*}
D^{+\alpha} \mathcal{V}^{++}=0, \quad D^{++} \mathcal{V}^{++}=0 \tag{6}
\end{equation*}
$$

So called Wess-Zumino (WZ) type Lagrangian is constructed as an analytic superpotential for \mathcal{V}^{++}:

$$
\begin{equation*}
S_{\mathrm{WZ}}=\int d t d u D^{-\alpha} D_{\alpha}^{-} \mathcal{L}^{++}\left(\mathcal{V}^{++}, u_{i}^{ \pm}\right), \quad D^{+\alpha} \mathcal{L}^{++}\left(\mathcal{V}^{++}, u_{i}^{ \pm}\right)=0 \tag{7}
\end{equation*}
$$

In components, it has the following form

$$
\begin{equation*}
S_{\mathrm{WZ}}=\int d t\left[D \mathcal{U}(v)+i \dot{v}^{i j} \mathcal{A}_{i j}(v)+\frac{1}{2} \psi_{\alpha}^{(i} \psi^{j) \alpha} \mathcal{R}_{i j}(v)\right] \tag{8}
\end{equation*}
$$

It does not contain second-order terms in time derivatives, only first-order bosonic terms. By itself this Lagrangian describes a semi-dynamical spin multiplet. The triplet $v^{i j}$ describes semi-dynamical degrees of freedom (or spin variables), while the fermionic fields $\psi^{i \alpha}$ become auxiliary, and the singlet D can be treated as Lagrange multiplier (S. Fedoruk, E. Ivanov, O. Lechtenfeld, JHEP 1206 (2012) 147).

Linear mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$

The ordinary $\mathcal{N}=4$ multiplets have their mirror counterparts characterized by the mutual interchange of two $\mathrm{SU}(2)$ groups which form the $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$ automorphism group (E. Ivanov, J. Niederle, Phys. Rev. D 80 (2009) 065027). Swapping the indices $i, j \leftrightarrow \alpha, \beta$ yields the same $\mathcal{N}=4, d=1$ superalgebra:

$$
\begin{equation*}
\left\{Q_{\alpha}^{i}, Q_{j}^{\beta}\right\}=2 \delta_{j}^{i} \delta_{\alpha}^{\beta} H, \quad i, j \leftrightarrow \alpha, \beta \tag{9}
\end{equation*}
$$

Thus the constraints for the mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ are written as

$$
\begin{equation*}
D^{i(\alpha} V^{\beta \gamma)}=0, \quad V^{\alpha \beta}=V^{\beta \alpha}, \quad \overline{\left(V^{\alpha \beta}\right)}=-V_{\alpha \beta} \tag{10}
\end{equation*}
$$

Both multiplets $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ are mutually equivalent. We can split the triplet $V^{\alpha \beta}$ into complex and real superfields as

$$
\begin{equation*}
V^{12}=-Y, \quad V^{22}=-\sqrt{2} U, \quad V^{11}=\sqrt{2} \bar{U} \tag{11}
\end{equation*}
$$

The constraints become

$$
\begin{equation*}
D^{i} \bar{U}=0, \quad \bar{D}_{i} U=0, \quad \sqrt{2} D_{i} Y=\bar{D}_{i} \bar{U}, \quad \sqrt{2} \bar{D}_{i} Y=-D_{i} U \tag{12}
\end{equation*}
$$

The complex superfield is chiral (S. S., J. Phys. A 54 (2021) 035205).

Non-linear mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$

The non-linear mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ is described by a quartet superfield $N^{\alpha A}$, where the capital index $A(A=1,2)$ is an external $\mathrm{SU}(2)_{\text {ext. }}$ index. The superfield satisfies the following constraints (E. Ivanov, S . Krivonos, O. Lechtenfeld, Class. Quant. Grav. 21 (2004) 1031-1050)

$$
\begin{equation*}
N^{\alpha A} N_{\alpha A}=R^{2}, \quad N_{A}^{(\alpha} D_{i}^{\beta} N^{\gamma) A}=0 \tag{13}
\end{equation*}
$$

The first constraint specifies coordinates of the sphere S^{3} in \mathbb{R}^{4}. The constraints are written covariantly
 subgroup $\mathrm{SU}(2)_{\mathrm{R}} \times \mathrm{SU}(2)_{\text {ext. }}$. corresponds to the $\mathrm{SO}(4)$ isometry group of S^{3}.

We introduce the stereographic coordinates $V^{\alpha \beta}$ of S^{3} as

$$
\begin{array}{ll}
N^{21}=\frac{R\left[2 i R V_{12}+\left(R^{2}-V^{2}\right)\right]}{\sqrt{2}\left(R^{2}+V^{2}\right)}, & N^{11}=\frac{-\sqrt{2} i R^{2} V^{11}}{R^{2}+V^{2}} \\
N^{12}=\frac{R\left[2 i R V_{12}-\left(R^{2}-V^{2}\right)\right]}{\sqrt{2}\left(R^{2}+V^{2}\right)}, & N^{22}=\frac{-\sqrt{2} i R^{2} V^{22}}{R^{2}+V^{2}} \tag{14}
\end{array}
$$

where

$$
\begin{equation*}
V^{2}=-\frac{1}{2} V^{\alpha \beta} V_{\alpha \beta}, \quad \overline{\left(V^{\alpha \beta}\right)}=-V_{\alpha \beta} \tag{15}
\end{equation*}
$$

The relevant metric on the 3 -sphere reads

$$
\begin{equation*}
d s^{2}=-\frac{R^{4} d v^{\alpha \beta} d v_{\alpha \beta}}{\left(R^{2}+v^{2}\right)^{2}}, \quad v^{\alpha \beta}:=\left.V^{\alpha \beta}\right|_{\theta=0}, \quad v^{2}:=-\frac{1}{2} v^{\alpha \beta} v_{\alpha \beta} \tag{16}
\end{equation*}
$$

The superfield constraints are rewritten as

$$
\begin{equation*}
D_{i}^{(\gamma} V^{\alpha \beta)}+\frac{i}{R} V^{\lambda(\gamma} D_{i \lambda} V^{\alpha \beta)}=0 \tag{17}
\end{equation*}
$$

One can see that the limit $R \rightarrow \infty$ leads to the linear constraints of the mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$. The non-linear constraints are invariant under the following rotations and translations on the 3 -sphere:

$$
\begin{align*}
& \delta V^{\alpha \beta}=a^{\alpha \beta}-\frac{2 i}{R} a_{\lambda}^{(\alpha} V^{\beta) \lambda}-\frac{1}{R^{2}} a^{\lambda \mu} V_{\lambda}^{\alpha} V_{\mu}^{\beta} \\
& \delta V^{\alpha \beta}=2 b_{\lambda}^{(\alpha} V^{\beta) \lambda}, \quad \delta D_{i}^{\alpha}=b_{\lambda}^{\alpha} D_{i}^{\lambda} \tag{18}
\end{align*}
$$

The rotations $b^{\alpha \beta}$ correspond to a diagonal subgroup of $\mathrm{SU}(2)_{\mathrm{R}} \times \mathrm{SU}(2)_{\text {ext. }}$, while the translations $a^{\alpha \beta}$ represents the external group $\mathrm{SU}(2)_{\text {ext. }}$:

$$
\begin{align*}
& \delta N^{\alpha A}=b_{\beta}^{\alpha} N^{\beta A}+b_{B}^{A} N^{\alpha B}, \quad \delta D_{i}^{\alpha}=b_{\beta}^{\alpha} D_{i}^{\beta} \\
& \delta N^{\alpha A}=-\frac{2 i}{R} a_{B}^{A} N^{\alpha B} \tag{19}
\end{align*}
$$

Because we are interested in construction of WZ action, it is enough to present the θ and θ^{2} expansions of the superfield. The non-linear solution reads

$$
\begin{align*}
V^{\alpha \beta}= & v^{\alpha \beta}-\theta^{k(\alpha} \chi_{k}^{\beta)}-\frac{i}{R} \theta_{\lambda}^{k} v^{\lambda(\alpha} \chi_{k}^{\beta)}-\left[\frac{1}{2} \theta^{k(\alpha} \theta_{k}^{\beta)}+\frac{i}{R} \theta^{k(\alpha} \theta_{k \gamma} v^{\beta) \gamma}-\frac{1}{2 R^{2}} \theta^{k(\lambda} \theta_{k}^{\gamma)} v_{\lambda}^{(\alpha} v_{\gamma}^{\beta)}\right] C \\
& +\frac{1}{R^{2}+v^{2}}\left[i R^{2} \theta^{k(\alpha} \theta_{k \gamma} \dot{v}^{\beta) \gamma}-2 R \theta^{k(\alpha} \theta_{k \gamma} \dot{v}^{\beta) \mu} v_{\mu}^{\gamma}-R \theta_{\gamma}^{k} \theta_{k \mu} v^{\gamma \mu} \dot{v}^{\alpha \beta}+i \theta^{k \gamma} \theta_{k \lambda} v_{\mu}^{\lambda} v_{\gamma}^{(\alpha} \dot{v}^{\beta) \mu}\right] \\
& +\frac{\theta^{k(\lambda} \theta_{k}^{\mu)} v^{\alpha \beta}}{8\left(R^{2}+v^{2}\right)}\left(\chi_{\lambda}^{i} \chi_{i \mu}-\frac{2 i}{R} v_{\lambda}^{\gamma} \chi_{\gamma}^{i} \chi_{i \mu}-\frac{1}{R^{2}} v_{\lambda}^{\gamma} v_{\mu}^{\delta} \chi_{\gamma}^{i} \chi_{i \delta}\right)-\frac{1}{8 R^{2}} \theta_{\lambda}^{(i} \theta^{k) \lambda} v^{\alpha \beta} \chi_{i \mu} \chi_{k}^{\mu} \\
& -\frac{i}{2 R} \theta^{k(\alpha} \theta_{k \gamma} \chi^{i \beta)} \chi_{i}^{\gamma}+\frac{1}{2 R^{2}} \theta^{k(\lambda} \theta_{k}^{\mu)} \chi_{\lambda}^{i} \chi_{i}^{(\alpha} v_{\mu}^{\beta)}+\left(\theta^{3} \text { and } \theta^{4} \text { terms }\right), \tag{20}
\end{align*}
$$

where

$$
\begin{equation*}
\overline{\left(v^{\alpha \beta}\right)}=-v_{\alpha \beta}, \quad \overline{\left(\chi^{k \alpha}\right)}=-\chi_{k \alpha}, \quad \overline{(C)}=C \tag{21}
\end{equation*}
$$

The components transform as

$$
\begin{align*}
\delta v^{\alpha \beta}= & \epsilon^{k(\alpha} \chi_{k}^{\beta)}+\frac{i}{R} \epsilon_{\lambda}^{k} v^{\lambda(\alpha} \chi_{k}^{\beta)} \\
\delta \chi_{i}^{\alpha}= & \frac{2 i R^{2} \epsilon_{i \beta}}{R^{2}+v^{2}}\left(\dot{v}^{\alpha \beta}+\frac{i}{R} v_{\gamma}^{\beta} \dot{v}^{\alpha \gamma}\right)-\left(\epsilon_{i}^{\alpha}+\frac{i}{R} \epsilon_{i \beta} v^{\alpha \beta}\right) C+\left(\epsilon_{i}^{\alpha}+\frac{i}{R} \epsilon_{i \beta} v^{\alpha \beta}\right) \frac{v_{\lambda \mu} \chi^{i \lambda} \chi_{i}^{\mu}}{4\left(R^{2}+v^{2}\right)} \\
& +\frac{i}{2 R} \epsilon^{k \beta} \chi_{i \beta} \chi_{k}^{\alpha}-\frac{i R \epsilon_{i \beta}}{2\left(R^{2}+v^{2}\right)}\left(\chi^{k \beta}+\frac{i}{R} v_{\gamma}^{\beta} \chi^{k \gamma}\right) \chi_{k}^{\alpha} \\
\delta C= & -i \epsilon_{i \alpha} \partial_{t}\left[\frac{R^{2}}{R^{2}+v^{2}}\left(\chi^{i \alpha}+\frac{i}{R} \chi^{i \beta} v_{\beta}^{\alpha}\right)\right] . \tag{22}
\end{align*}
$$

WZ action

The sigma-model type and WZ Lagrangians for the non-linear multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ were constructed by S . Bellucci, S. Krivonos, Phys. Rev. D 74 (2006) 125024. Here, we separately consider WZ Lagrangian and give it in a manifestly $\mathcal{N}=4$ supersymmetric superfield form. Ansatz for the WZ action reads

$$
\begin{array}{r}
S_{\mathrm{WZ}}=\int d t d^{4} \theta\left[\theta^{k(\alpha} \theta_{k}^{\beta)} L_{\alpha \beta}(V)\right]=\frac{1}{12} \int d t D_{i \lambda} D_{j}^{\lambda} D_{\mu}^{(i} D^{j) \mu}\left[\theta^{k(\alpha} \theta_{k}^{\beta)} L_{\alpha \beta}(V)\right] \\
L^{\alpha \beta}=L^{\beta \alpha}, \quad \overline{\left(L_{\alpha \beta}\right)}=-L^{\alpha \beta} \tag{23}
\end{array}
$$

We impose a quadratic condition,

$$
\begin{equation*}
D_{\gamma}^{(i} D^{j) \gamma} L^{\alpha \beta}(V)=0 \tag{24}
\end{equation*}
$$

which is a sufficient condition,

$$
\begin{equation*}
\delta S_{\mathrm{WZ}}=\frac{1}{6} \int d t D_{i \lambda} D_{j}^{\lambda} D_{\mu}^{(i} D^{j) \mu}\left[\epsilon^{k(\alpha} \theta_{k}^{\beta)} L_{\alpha \beta}(V)\right] \quad \Rightarrow \quad \int d t \epsilon_{j \alpha} D_{i \beta} D_{\mu}^{(i} D^{j) \mu} L^{\alpha \beta}(V)=0 \tag{25}
\end{equation*}
$$

It leads to

$$
\begin{equation*}
\frac{1}{3}\left(D_{\gamma}^{(i} V_{\delta \rho}\right)\left(D^{j) \gamma} V^{\delta \rho}\right)\left[\frac{\partial}{\partial V_{\lambda \mu}}+\frac{V^{\lambda \mu}}{R^{2}+V^{2}}\right] \frac{\partial}{\partial V^{\lambda \mu}} L^{\alpha \beta}(V)=0 \tag{26}
\end{equation*}
$$

WZ Langrangian

The triplet function $L^{\alpha \beta}(v)$ satisfies the Laplace-Beltrami equation on S^{3} :

$$
\begin{equation*}
\Delta_{S^{3}} L^{\alpha \beta}(v)=0, \quad \Delta_{S^{3}}=-\frac{1}{R^{4}}\left(R^{2}+v^{2}\right)^{2}\left(\partial^{\lambda \mu}+\frac{v^{\lambda \mu}}{R^{2}+v^{2}}\right) \partial_{\lambda \mu}, \quad \partial_{\lambda \mu} v^{\alpha \beta}=\delta_{\lambda}^{(\alpha} \delta_{\mu}^{\beta)} \tag{27}
\end{equation*}
$$

In components we obtain the WZ Langrangian

$$
\begin{equation*}
\mathcal{L}_{\mathrm{WZ}}=C \mathcal{U}(v)+i \dot{v}^{\alpha \beta} \mathcal{A}_{\alpha \beta}(v)+\frac{1}{2} \chi^{i \alpha} \chi_{i}^{\beta} \mathcal{R}_{\alpha \beta}(v), \tag{28}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{U}(v)= & \partial_{\alpha \beta} L^{\alpha \beta}-\frac{2 i}{R} v_{\alpha}^{\gamma} \partial_{\beta \gamma} L^{\alpha \beta}-\frac{1}{R^{2}} v_{\alpha}^{\gamma} v_{\beta}^{\lambda} \partial_{\gamma \lambda} L^{\alpha \beta} \\
\mathcal{A}_{\alpha \beta}(v)= & \frac{2}{R^{2}+v^{2}}\left(-R^{2} \partial_{\gamma(\alpha} L_{\beta)}^{\gamma}+2 i R v_{\gamma(\alpha} \partial_{\beta) \lambda} L^{\gamma \lambda}-i R v_{\gamma \lambda} \partial_{\alpha \beta} L^{\gamma \lambda}+v_{\lambda}^{\rho} v_{\gamma(\alpha} \partial_{\beta) \rho} L^{\gamma \lambda}\right), \\
\mathcal{R}_{\alpha \beta}(v)= & \partial_{\mu(\alpha} \partial_{\beta) \lambda} L^{\lambda \mu}+\frac{2 i}{R}\left(\partial_{\gamma(\alpha} L_{\beta)}^{\gamma}-v_{\lambda}^{\gamma} \partial_{\mu(\alpha} \partial_{\beta) \gamma} L^{\lambda \mu}\right) \\
& -\frac{1}{R^{2}}\left(2 v^{\lambda \mu} \partial_{\lambda(\alpha} L_{\beta) \mu}+v_{\lambda}^{\gamma} v_{\mu}^{\rho} \partial_{\rho(\alpha} \partial_{\beta) \gamma} L^{\lambda \mu}\right) \\
& -\frac{1}{2\left(R^{2}+v^{2}\right)}\left(v^{\lambda \mu} \partial_{\lambda \mu} L_{\alpha \beta}+\frac{2 i}{R} v_{\alpha}^{\gamma} v^{\lambda \mu} \partial_{\lambda \mu} L_{\gamma \beta}-\frac{1}{R^{2}} v_{\alpha}^{\gamma} v_{\beta}^{\delta} v^{\lambda \mu} \partial_{\lambda \mu} L_{\gamma \delta}\right) . \tag{29}
\end{align*}
$$

The supersymmetry requires the following conditions:

$$
\begin{equation*}
\partial_{(\alpha}^{\gamma} \mathcal{A}_{\beta) \gamma}=\frac{R^{2} \partial_{\alpha \beta} \mathcal{U}}{R^{2}+v^{2}}, \quad \mathcal{R}_{\alpha \beta}=\partial_{\alpha \beta} \mathcal{U} \tag{30}
\end{equation*}
$$

Both equations can be rewritten as

$$
\begin{equation*}
\operatorname{rot}_{S^{3}} \mathcal{A}=\operatorname{grad}_{S^{3}} \mathcal{U}, \quad \mathcal{R}_{\alpha \beta}=\nabla_{\alpha \beta} \mathcal{U} \tag{31}
\end{equation*}
$$

One can calculate that the scalar potential \mathcal{U} satisfies the Laplace-Beltrami equation:

$$
\begin{equation*}
\boldsymbol{\Delta}_{S^{3}} \mathcal{U}=0 \tag{32}
\end{equation*}
$$

The auxiliary field C plays the role of a Lagrange multiplier. Its equation of motion enforces the constraint

$$
\begin{equation*}
\mathcal{U}(v) \approx 0 \tag{33}
\end{equation*}
$$

It kills one degree of freedom in the triplet $v^{\alpha \beta}$. Consequently, the group $\mathrm{SO}(4)$ reduces to the isometry group of a 2-dimensional surface embedded in S^{3}.

Dirac brackets

The fermionic fields $\chi^{i \alpha}$ can be eliminated by their equations of motion. Then pass to the Hamiltonian system with $\lambda^{\alpha \beta}$ and C treated as Lagrange multipliers:

$$
\begin{equation*}
H=\lambda^{\alpha \beta} \pi_{\alpha \beta}-C \mathcal{U} \tag{34}
\end{equation*}
$$

The second class Hamiltonian constraints of the system are then given by

$$
\begin{equation*}
\pi_{\alpha \beta}=p_{\alpha \beta}-i \mathcal{A}_{\alpha \beta} \approx 0, \quad \mathcal{U} \approx 0 \tag{35}
\end{equation*}
$$

The last constraint appears as a secondary one from the primary constraint $p_{C} \approx 0$. Define a matrix formed by Poisson brackets of these constraints:

$$
M=\left(\begin{array}{cc}
\left\{\pi_{\alpha \beta}, \pi_{\gamma \delta}\right\}_{\mathrm{PB}} & \left\{\pi_{\alpha \beta}, \mathcal{U}\right\}_{\mathrm{PB}} \tag{36}\\
\left\{\mathcal{U}, \pi_{\gamma \delta}\right\}_{\mathrm{PB}} & 0
\end{array}\right)
$$

Following the Dirac procedure we calculate the inverse matrix M^{-1} and find Dirac brackets as

$$
\begin{equation*}
\left\{v^{\alpha \beta}, v_{\lambda \mu}\right\}_{\mathrm{DB}}=\frac{i \delta_{(\lambda}^{(\alpha} \partial_{\mu)}^{\beta)} \mathcal{U}}{\partial_{\gamma \delta} \mathcal{U} \partial^{\gamma \delta} \mathcal{U}}\left(1+\frac{v^{2}}{R^{2}}\right), \quad \partial_{\gamma \delta} \mathcal{U} \partial^{\gamma \delta} \mathcal{U} \neq 0 \tag{37}
\end{equation*}
$$

Monopole

The monopole solution (or a fuzzy sphere S^{2}) for the linear multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ was constructed in the analytic harmonic superspace (E. Ivanov, O. Lechtenfeld, JHEP 0309 (2003) 073). Counterpart of this solution for the non-linear mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ is given by

$$
\begin{equation*}
L_{\alpha \beta}(V)=\frac{2 k_{\alpha \beta} V^{2}+k^{\lambda \mu} V_{\lambda \mu} V_{\alpha \beta}}{2|V|\left(2|k||V|-k^{\lambda \mu} V_{\lambda \mu}\right)}, \quad k^{2}=-\frac{1}{2} k^{\alpha \beta} k_{\alpha \beta} \tag{38}
\end{equation*}
$$

where $k^{\alpha \beta}$ is a constant vector. The sphere Lagrangian reads

$$
\begin{equation*}
\mathcal{L}_{\text {sphere }}=C \mathcal{U}(v)+i \dot{v}^{\alpha \beta} \mathcal{A}_{\alpha \beta}(v)+\frac{1}{2} \chi^{i \alpha} \chi_{i}^{\beta} \mathcal{R}_{\alpha \beta}(v) \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{U}(v)=-\frac{1}{2|v|}\left(1-\frac{v^{2}}{R^{2}}\right), \quad \mathcal{A}_{\alpha \beta}=-\frac{k_{(\alpha}^{\gamma} v_{\beta) \gamma}}{|v|\left(2|k||v|-k^{\lambda \mu} v_{\lambda \mu}\right)}-\frac{i R v_{\alpha \beta}}{|v|\left(R^{2}+v^{2}\right)} . \tag{40}
\end{equation*}
$$

From the constraint $\mathcal{U} \approx 0$ we derive the equation of the sphere S^{2} :

$$
\begin{equation*}
v^{2} \approx R^{2} \tag{41}
\end{equation*}
$$

For clarification, it is convenient to pass to coordinates in \mathbb{R}^{4} satisfying

$$
\begin{equation*}
n^{\alpha A} n_{\alpha A}=\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}+\left(x_{4}\right)^{2}=R^{2}, \quad n^{\alpha A}:=\left.N^{\alpha A}\right|_{\theta=0} \tag{42}
\end{equation*}
$$

The constraint becomes

$$
\begin{equation*}
\mathcal{U}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{x_{3}}{R\left[\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\left(x_{4}\right)^{2}\right]^{\frac{1}{2}}} \approx 0 \tag{43}
\end{equation*}
$$

Thus, the sphere S^{2} is obtained as a result of the section of S^{3} by the plane $x_{3}=0$.

We can add to $\mathcal{L}_{\text {sphere }}$ the Fayet-Iliopoulos (FI) term

$$
\begin{equation*}
\mathcal{L}_{\mathrm{FI}}=\frac{C}{2 r}\left(1-\frac{r^{2}}{R^{2}}\right), \quad r=\text { const. } \tag{44}
\end{equation*}
$$

and modify the constraint as

$$
\begin{equation*}
\mathcal{U}(v)=\frac{1}{2 r}\left(1-\frac{r^{2}}{R^{2}}\right)-\frac{1}{2|v|}\left(1-\frac{v^{2}}{R^{2}}\right) \approx 0 \tag{45}
\end{equation*}
$$

Here r is a radius of the sphere S^{2} which is a parameter independent of R. In the limit $R \rightarrow \infty$ we obtain the sphere S^{2} embedded in \mathbb{R}^{3} :

$$
\begin{equation*}
\mathcal{U}(v)=\frac{1}{2 r}-\frac{1}{2|v|} \approx 0 \tag{46}
\end{equation*}
$$

The triplet $v^{\alpha \beta}$ satisfies the same Dirac brackets for both linear and non-linear cases:

$$
\begin{equation*}
\left\{v^{\alpha \beta}, v_{\lambda \mu}\right\}_{\mathrm{DB}}=-i \delta_{\lambda}^{\alpha} v_{\mu}^{\beta}|v| \tag{47}
\end{equation*}
$$

One can check that they form the $s u(2)$ algebra, where the square $v^{2}=r^{2}$ is Casimir operator.

Coupling to chiral superfields

The non-linear multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ admits description through chiral superfields, then we couple it to the linear chiral multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$. For what follows, it is convenient to deal with another form of the triplet $V^{i j}$ given by

$$
\begin{align*}
Y & =\frac{i R}{4}\left(R^{2}+V^{2}\right)\left[\frac{1}{\left(V^{2}-R^{2}+2 i R V_{12}\right)}-\frac{1}{\left(V^{2}-R^{2}-2 i R V_{12}\right)}\right] \\
U & =\frac{R^{2} V^{22}}{\sqrt{2}\left(V^{2}-R^{2}-2 i R V_{12}\right)} \\
\bar{U} & =\frac{-R^{2} V^{11}}{\sqrt{2}\left(V^{2}-R^{2}+2 i R V_{12}\right)} \tag{48}
\end{align*}
$$

The non-linear constraints become

$$
\begin{array}{ll}
\bar{D}_{i} U=0, & D^{i} U=\frac{\sqrt{2} i}{R} \bar{D}^{i}\left[2 Y^{2}-2 U \bar{U}+i Y\left(R^{2}+8 U \bar{U}-4 Y^{2}\right)^{\frac{1}{2}}\right] \\
D^{i} \bar{U}=0, & \bar{D}_{i} \bar{U}=\frac{\sqrt{2} i}{R} D_{i}\left[2 Y^{2}-2 U \bar{U}-i Y\left(R^{2}+8 U \bar{U}-4 Y^{2}\right)^{\frac{1}{2}}\right] \tag{49}
\end{array}
$$

The chiral superfield U is solved by

$$
\begin{align*}
U\left(t_{\mathrm{L}}, \theta_{i}\right)= & u+\sqrt{2} \theta_{k} \psi^{k}-\frac{1}{2 \sqrt{2} R^{2}} \theta_{k} \theta^{k} C\left[R^{2}+8 u \bar{u}-8 y^{2}-4 i y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \\
& -\frac{i}{\sqrt{2} R} \theta_{k} \theta^{k} \dot{y}\left[\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{-\frac{1}{2}}\left(R^{2}+8 u \bar{u}-8 y^{2}\right)-4 i y\right] \\
& -\frac{2 \sqrt{2} \theta_{k} \theta^{k} \dot{u} \bar{u}}{R\left(R^{2}+8 u \bar{u}\right)}\left[R^{2}+8 u \bar{u}-8 y^{2}-4 i y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \\
& +\frac{\sqrt{2}}{R} \theta_{k} \theta^{k}(u \dot{\bar{u}}+\dot{u} \bar{u})\left[1-2 i y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{-\frac{1}{2}}\right]+\theta_{k} \theta^{k}\left(\psi^{2} \text { term }\right) . \tag{50}
\end{align*}
$$

From plane to squashed sphere

In (E. Ivanov, S. S., Phys. Rev. D 105 (2022) 086027) we considered the simplest WZ Lagrangian for the linear multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ given by

$$
\begin{equation*}
\mathcal{L}_{\text {plane }}=\frac{C}{2}(c-y)+\frac{i}{2}(u \dot{\bar{u}}-\dot{u} \bar{u})-\frac{1}{4} \chi_{1}^{i} \chi_{i 2} \tag{51}
\end{equation*}
$$

where c is a real constant parameter. The constraint $y \approx c$ defines a non-commutative plane with Dirac bracket

$$
\begin{equation*}
\{u, \bar{u}\}_{\mathrm{DB}}=i \tag{52}
\end{equation*}
$$

Here we show that a modification of the non-commutative plane for the non-linear multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ leads to a squashed 2-sphere. The relevant WZ action written as a superpotential is composed of two parts:

$$
\begin{equation*}
S_{\mathrm{sq} . \text { sphere }}=\frac{i R}{8 \sqrt{2}} \int d t_{\mathrm{L}} d^{2} \theta\left(1+\frac{4 i c}{R}\right) U-\frac{i R}{8 \sqrt{2}} \int d t_{\mathrm{R}} d^{2} \bar{\theta}\left(1-\frac{4 i c}{R}\right) \bar{U} \tag{53}
\end{equation*}
$$

The action is invariant only under the $\mathrm{U}(1)_{\text {rot }}$. rotation from $\mathrm{SO}(4)$.

The component Lagrangian reads

$$
\begin{align*}
\mathcal{L}_{\text {sq.sphere }}= & \frac{i u \dot{\bar{u}}}{2\left(R^{2}+8 u \bar{u}\right)}\left(1-\frac{4 i c}{R}\right)\left[R^{2}+8 u \bar{u}-8 y^{2}+4 i y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \\
& -\frac{i \dot{u} \bar{u}}{2\left(R^{2}+8 u \bar{u}\right)}\left(1+\frac{4 i c}{R}\right)\left[R^{2}+8 u \bar{u}-8 y^{2}-4 i y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \\
& +\frac{C}{2 R}\left[\frac{c}{R}\left(R^{2}+8 u \bar{u}-8 y^{2}\right)-y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right]+\psi^{2} \text { term. } \tag{54}
\end{align*}
$$

One can see that it contains the FI part. The constraint imposed by the equation of motion for C reads

$$
\begin{equation*}
\frac{1}{2 R}\left[\frac{c}{R}\left(R^{2}+8 u \bar{u}-8 y^{2}\right)-y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \approx 0 \tag{55}
\end{equation*}
$$

Dirac brackets are

$$
\begin{aligned}
& \{u, \bar{u}\}=\frac{i}{R}\left(R^{2}+8 u \bar{u}\right)\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{-\frac{1}{2}} \\
& \{y, u\}=\frac{4 i u}{R}\left[y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{-\frac{1}{2}}-\frac{2 c}{R}\right]\left(R^{2}+8 u \bar{u}\right)\left[R^{2}+8 u \bar{u}-8 y^{2}+\frac{16 c y}{R}\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right]^{-1}, \\
& \{\bar{u}, y\}=\frac{4 i \bar{u}}{R}\left[y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{-\frac{1}{2}}-\frac{2 c}{R}\right]\left(R^{2}+8 u \bar{u}\right)\left[R^{2}+8 u \bar{u}-8 y^{2}+\frac{16 c y}{R}\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right]^{-1} .
\end{aligned}
$$

The constraint is rewritten as

$$
\begin{equation*}
\frac{R^{2}\left(R+\sqrt{R^{2}+16 c^{2}}\right)}{8\left[\left(x_{3}\right)^{2}+\left(x_{4}\right)^{2}\right]^{2}}\left[x_{3}-\frac{4 c x_{4}}{R+\sqrt{R^{2}+16 c^{2}}}\right]\left[x_{4}+\frac{4 c x_{3}}{R+\sqrt{R^{2}+16 c^{2}}}\right] \approx 0 \tag{56}
\end{equation*}
$$

and has two equivalent solutions corresponding to planes:

$$
\begin{equation*}
\text { 1) } \quad x_{3} \approx \frac{4 c x_{4}}{R+\sqrt{R^{2}+16 c^{2}}}, \quad \text { 2) } \quad x_{4} \approx-\frac{4 c x_{3}}{R+\sqrt{R^{2}+16 c^{2}}} \tag{57}
\end{equation*}
$$

Without loss of generality, we can choose the first solution that implies a plane section of the sphere S^{3}. Hence the constraint defines a squashed 2-sphere:

1) $\left[R^{2}-\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}-\left(x_{4}\right)^{2}\right]^{\frac{1}{2}} \approx \frac{4\left|c x_{4}\right|}{R+\sqrt{R^{2}+16 c^{2}}} \Rightarrow$

$$
\begin{equation*}
\Rightarrow \quad\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\frac{2 \sqrt{R^{2}+16 c^{2}}}{R+\sqrt{R^{2}+16 c^{2}}}\left(x_{4}\right)^{2} \approx R^{2} . \tag{58}
\end{equation*}
$$

The constraint respects only $\mathrm{U}(1)$ symmetry from $\mathrm{SO}(4)$ that keeps invariant the bilinear form $\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}$.

We proceed to the coupling of the linear multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ to the non-linear multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$. The linear multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ is described by the chiral superfield Z :

$$
\begin{equation*}
\bar{D}_{i} Z=0, \quad Z\left(t_{\mathrm{L}}, \theta_{i}\right)=z+\sqrt{2} \theta_{k} \xi^{k}+\theta_{k} \theta^{k} B \tag{59}
\end{equation*}
$$

Let us consider the simplest interaction $U Z$ together with the squashed sphere action and the kinetic term $K(Z, \bar{Z})$:

$$
\begin{align*}
S= & \frac{1}{4} \int d t d \theta^{2} d^{2} \bar{\theta} K(Z, \bar{Z})+\frac{i R}{8 \sqrt{2}} \int d t_{\mathrm{L}} d^{2} \theta\left(1+\frac{4 i c}{R}\right) U-\frac{i R}{8 \sqrt{2}} \int d t_{\mathrm{R}} d^{2} \bar{\theta}\left(1-\frac{4 i c}{R}\right) \bar{U} \\
& +\frac{\mu}{2} \int d t_{\mathrm{L}} d^{2} \theta Z U+\frac{\mu}{2} \int d t_{\mathrm{R}} d^{2} \bar{\theta} \bar{Z} \bar{U} \tag{60}
\end{align*}
$$

We will limit our consideration to the bosonic Lagrangian which is given by (up to full time derivatives)

$$
\begin{align*}
\mathcal{L}= & (\dot{\bar{z}} \dot{z}+\bar{B} B) \partial_{z} \partial_{\bar{z}} K(z, \bar{z})+\mu(B u+\bar{B} \bar{u}) \\
& +\frac{C}{2 R^{2}}\left\{\left[c-\frac{\mu}{\sqrt{2}}(z+\bar{z})\right]\left(R^{2}+8 u \bar{u}-8 y^{2}\right)-R y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\left[1-\frac{2 \sqrt{2} i \mu}{R}(z-\bar{z})\right]\right\} \\
& +\frac{i u \dot{\bar{u}}}{2\left(R^{2}+8 u \bar{u}\right)}\left(1-\frac{4 i c}{R}+\frac{4 \sqrt{2} i \mu}{R} \bar{z}\right)\left[R^{2}+8 u \bar{u}-8 y^{2}+4 i y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \\
& -\frac{i \dot{u} \bar{u}}{2\left(R^{2}+8 u \bar{u}\right)}\left(1+\frac{4 i c}{R}-\frac{4 \sqrt{2} i \mu}{R} z\right)\left[R^{2}+8 u \bar{u}-8 y^{2}-4 i y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \\
& -\frac{i}{32}\left(1-\frac{4 i c}{R}+\frac{4 \sqrt{2} i \mu}{R} \bar{z}\right) \partial_{t}\left[R^{2}+8 u \bar{u}-8 y^{2}+4 i y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \\
& +\frac{i}{32}\left(1+\frac{4 i c}{R}-\frac{4 \sqrt{2} i \mu}{R} z\right) \partial_{t}\left[R^{2}+8 u \bar{u}-8 y^{2}-4 i y\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \tag{61}
\end{align*}
$$

The equation of motion for C imposes that

$$
\begin{equation*}
\left[1-\frac{2 \sqrt{2} i \mu}{R}(z-\bar{z})\right]\left[\frac{\tilde{c}}{2 R^{2}}\left(R^{2}+8 u \bar{u}-8 y^{2}\right)-\frac{y}{2 R}\left(R^{2}+8 u \bar{u}-4 y^{2}\right)^{\frac{1}{2}}\right] \approx 0 \tag{62}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{c}(z, \bar{z})=\left[c-\frac{\mu}{\sqrt{2}}(z+\bar{z})\right]\left[1-\frac{2 \sqrt{2} i \mu}{R}(z-\bar{z})\right]^{-1} . \tag{63}
\end{equation*}
$$

This is the same constraint of the squashed sphere S^{2} with a parameter \tilde{c} depending on the coordinates z and \bar{z}. Therefore, the squashed 2 -sphere is defined by the parameter \tilde{c} set at each point of Kähler manifold.

- We considered the non-linear version of the mirror multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$ as a semi-dynamical multiplet and constructed its action.
- We showed that the quadratic constraint for the superfield function induces the Laplace-Beltrami equation on the sphere S^{3}.
- We considered embeddings of round and squashed 2-dimensional spheres into S^{3}.
- We coupled the squashed sphere S^{2} to the dynamical mirror multiplet $(\mathbf{2}, \mathbf{4}, \mathbf{2})$ and constructed their interaction as a superpotential.
- In the limit $R \rightarrow \infty$, models of the linear multiplet are reproduced.

Outlook

- It would be interesting to find a solution of the torus $S^{1} \times S^{1}$ as an embedding in S^{3}.
- Unfortunately, it is not clear how to couple the non-linear multiplet to the dynamical multiplet $(\mathbf{1}, \mathbf{4}, \mathbf{3})$. Perhaps, it can be done only within the harmonic superspace description.
- The next tempting problem is to consider the non-linear multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ as a semi-dynamical one (F. Delduc, E. Ivanov, Nucl. Phys. B 753 (2006) 211-241; Nucl. Phys. B 855 (2012) 815-853).
- There is also interest in the dynamical non-linear multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$. For example, one can consider a model of 3D supersymmetric particle in the field of a monopole (S. Bellucci, S. Krivonos, A. Sutulin, Phys. Rev. D 81 (2010) 105026, E. Ivanov, M. Konyushikhin, Phys. Rev. D 82 (2010) 085014) with the modified potentials

$$
\begin{equation*}
\mathcal{U}(v)=-\frac{1}{2}\left(\frac{1}{|v|}-\frac{|v|}{R^{2}}\right), \quad \mathcal{A}_{\alpha \beta}=-\frac{k_{(\alpha}^{\gamma} v_{\beta) \gamma}}{|v|\left(2|k||v|-k^{\lambda \mu} v_{\lambda \mu}\right)}-\frac{i R v_{\alpha \beta}}{|v|\left(R^{2}+v^{2}\right)} . \tag{64}
\end{equation*}
$$

Outlook

- It would be interesting to find a solution of the torus $S^{1} \times S^{1}$ as an embedding in S^{3}.
- Unfortunately, it is not clear how to couple the non-linear multiplet to the dynamical multiplet $(\mathbf{1}, \mathbf{4}, \mathbf{3})$. Perhaps, it can be done only within the harmonic superspace description.
- The next tempting problem is to consider the non-linear multiplet $(\mathbf{4}, \mathbf{4}, \mathbf{0})$ as a semi-dynamical one (F. Delduc, E. Ivanov, Nucl. Phys. B 753 (2006) 211-241; Nucl. Phys. B 855 (2012) 815-853).
- There is also interest in the dynamical non-linear multiplet $(\mathbf{3}, \mathbf{4}, \mathbf{1})$. For example, one can consider a model of 3D supersymmetric particle in the field of a monopole (S. Bellucci, S. Krivonos, A. Sutulin, Phys. Rev. D 81 (2010) 105026, E. Ivanov, M. Konyushikhin, Phys. Rev. D 82 (2010) 085014) with the modified potentials

$$
\begin{equation*}
\mathcal{U}(v)=-\frac{1}{2}\left(\frac{1}{|v|}-\frac{|v|}{R^{2}}\right), \quad \mathcal{A}_{\alpha \beta}=-\frac{k_{(\alpha}^{\gamma} v_{\beta) \gamma}}{|v|\left(2|k||v|-k^{\lambda \mu} v_{\lambda \mu}\right)}-\frac{i R v_{\alpha \beta}}{|v|\left(R^{2}+v^{2}\right)} . \tag{64}
\end{equation*}
$$

Thank you for your attention!

