Series of representations

Bruce Westbury

RDP, Yerevan, 21 August 2023

Introduction

- Given a representation V, we consider the centraliser algebras, $A(n)=\operatorname{End}\left(\otimes^{n} V\right)$.
- The seminal examples are the symmetric group algebras and the Brauer algebras.
- The idea of a series is that the algebras depend on one or more continuous parameters and there are special values where we truncate to get the centraliser algebras.
- The series in this talk are finite and the Cartan types vary.
- The algebras are only known for $n \leqslant 5$.

Assumption

Let $L(\lambda)$ have highest weight λ. The decomposition of $L(\lambda) \otimes L(\lambda)$ is

$$
\begin{aligned}
\wedge^{2} L(\lambda) & \cong L(\theta) \oplus L(\mu) \\
S^{2} L(\lambda) & \cong L(0) \oplus L\left(\nu_{1}\right) \oplus \cdots \oplus L\left(\nu_{k}\right)
\end{aligned}
$$

where 0 is the zero weight so $L(0)$ is the trivial representation and θ is the highest root so $L(\theta)$ is the adjoint representation.

Magic square

The Freudenthal magic square is the following square of Lie algebras. Each entry has a preferred representation.

- The third (or \mathbb{H}) row representations satisfy the assumption with $k=1$.
- The first (or \mathbb{R}) row and the fourth (or \mathbb{O}) row representations satisfy the assumption with $k=2$.

Idea, Pierre Vogel

Take the list of Casimir values

$$
\left[C(\lambda), C(\theta), C(\mu), C\left(\nu_{1}\right), \ldots, C\left(\nu_{k}\right)\right]
$$

- Consider these as projective coordinates of a point in projective space $P^{k+2}(\mathbb{Q})$.
- There are unexpected linear relations; these are points in projective space $P^{k}(\mathbb{Q})$.

Strategy, Hans Wenzl

- Interpolate Casimirs/eigenvalues
- Construct representation of braid group, B_{3}.
- Determine structure constants of algebra $A(2)$.
- (Optional) Take limit $q \rightarrow 1$.

Quaternion row

This gives Freudenthal triple sytems.

m	$-2 / 3$	0	1	2	4	8
\mathfrak{g}	A_{1}	$3 A_{1}$	C_{3}	A_{5}	D_{6}	E_{7}
G	$\operatorname{SL}(2)$	$\mathrm{SL}(2) \times \mathfrak{S}_{3}$	$\operatorname{Sp}(6)$	$\mathfrak{S}_{2} \times \operatorname{SL}(6) / \mu_{2}$	$\operatorname{Spin}(12)$	E_{7}
λ	$3 \omega_{1}$	$\omega_{1}+\omega_{2}+\omega_{3}$	ω_{3}	ω_{3}	ω_{6}	ω_{7}

m	-3	$-8 / 3$	$-5 / 2$
\mathfrak{g}	D_{5}	B_{3}	G_{2}
G	$\operatorname{SO}(10)$	$\operatorname{Spin}(7)$	G_{2}
ω	ω_{1}	ω_{3}	ω_{1}

Plane

The case $k=2$ gives a plane which contains three lines of representations.

Symmetric spaces

Associated to a symmetric space is a Lie algebra with an involution. The +1 -eigenspace is a Lie algebra and the -1-eigenspace is an L-module, V.

$2 / 3$	1	$4 / 3$	$8 / 3$	5	8	10	12
EVIII	EV	E 1	A 1		BD 1	FII	EIV
E_{8}	E_{7}	E_{6}	A_{2}	$O S p(1 \mid 2)$	D_{4}	F_{4}	E_{6}
D_{8}	A_{7}^{*}	C_{4}	A_{1}	A_{1}	B_{3}	B_{4}	F_{4}

Dimensions

These dimensions have the values:

$$
\begin{gathered}
\delta_{V}=(-2) \frac{(2 m+3 n+3 p)(3 m+3 n+2 p)}{p m} \\
\delta_{W}=\frac{9(m+n+p)(2 m+2 n+p)(2 m+3 n+2 p)(2 m+3 n+3 p)}{m p^{2}(m-p)}
\end{gathered}
$$

Bigons

The bigon coefficients are defined by

These are given the values

$$
\begin{gathered}
\phi=(-3) \frac{(m+n+p)(2 m+3 n+2 p)}{m p} \\
\psi=\frac{2}{3} \frac{(m-p)(3 m+3 n+2 p)}{m(2 m+2 n+p)}
\end{gathered}
$$

Note that $\phi \delta_{V}=\psi \delta_{W}$.

Triangle

The triangle coefficient is defined by

This is given the value

$$
\tau=\frac{\left(3 m^{2}+3 m n+4 m p+3 n p+2 p^{2}\right)}{3 m(2 m+2 n+p)}
$$

HS relation

Square relation

The coefficients $S q_{I}, S q_{U}, S q_{K}, S q_{H}, S q_{S}$ are defined by

Coefficients

These coefficients are given the values

$$
\begin{gathered}
S q_{I}=\frac{\left(5 m^{2}+8 m n+3 n^{2}+4 m p+2 n p\right)}{2 m(2 m+2 n+p)} \\
S q_{U}=(-1) \frac{\left(4 m^{2}+10 m n+6 n^{2}+5 m p+7 n p+2 p^{2}\right)(3 m+3 n+2 p)}{2 m p(2 m+2 n+p)} \\
S q_{K}=\frac{(4 m+3 n+2 p)(3 m+3 n+2 p)}{3 m(2 m+2 n+p)} \\
S q_{H}=(-1) \frac{\left(5 m^{2}+11 m n+6 n^{2}+7 m p+7 n p+2 p^{2}\right)}{m(2 m+2 n+p)} \\
S q_{S}=\frac{(3 m+3 n+2 p)^{2}}{2 m(2 m+2 n+p)}
\end{gathered}
$$

Conclusion

- Most of the representations admit an R-matrix.
- The exceptions are the adjoint representations where $L(\theta) \oplus \mathbb{C}$ admits an R-matrix.
- For most lines the representations have the same tensor product graph.
- Do the lines correspond to families of integrable quantum field theories?

