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Overview

@ The Lippmann-Schwinger equation and the Born
approximation.

© The Propagating-wave approximation: a nonperturbative
approximation scheme for performing scattering
calculations in two and three dimensions.

@ Complex potentials for which this approximation scheme is
exact.
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Scattering in D > 1

A linear scattering process in a d > 2 dimensional setup can be
modeled by an incident plane waves that scatters off a short
range potential v : RY — C.

>
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The scattering data is encapsulated in the scattering amplitude
f according to

4 etklx|l
P(x) = (x[k) + (27) 2f(ks7k)W for [|x|| = oo,
X\l 2
where x denotes the location of the detector, kg := k”—:”,

k= |||, and (x|k) = (2m)~%/2¢ikx,
s
X
K

s
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The Lippmann-Schwinger equation

The scattered wave 1 : R? — C solves the Lippmann-Schwinger
equation

) = [k) + G(P)v(X) [¢),
where G(p) := (k> — p% +ig)~!, e =T 0 and

) = [ dxlx) ().
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The Lippmann-Schwinger equation in the momentum
representation reads

(pl4) = (BlK) + G(p) | daw(p—a) (alv)

where
w(p — q) == (p|v(%)|q) = (27)%5(p — q),

and 7 : RY — C denotes the Fourier transform of v.
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Born series

This equation is solved iteratively by the Born series

wlw) = > (Pl

n=0

in which the zeroth term (p|1)(?)) = (p|k) and the n-th term is
given by iteration

(plvp™) = G(p) /Rd dqu(p —a) (alw" V) for neN.
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Asymptotically, i.e., for ||x|| — oo,

Schrodinger equation  — P2 ) = k2 i)

b(x) = /S dp (xIp) (pl¥)

To compute the scattering amplitude f we only need to
compute (p|¢) for p € S := {p|p € R, |p| = k}.
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Using

dp (x|p) G(p)w(p—k)=/d><’ x|G(®)|x) | dp(x'|p)w(p—k),

S)C Sk

and
4 etkllxl|

(x|G(p)x') — (2#)5Nd””7d;1 (ks|x) for ||x|| — oo,
X 2

where in d = 2 and d = 3 dimensions Ny equals Ny = —/ g and
N3 = — L respectively, we obtain
L ekl 1
¥ (x) = (2m)F Na— / daguw(k, — a) (alp™ ) for x| — oo.
[[x[|2 /R
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Thus, the scattering amplitude is given by

Flk, k) = f (kg k),

n=1

where

f(n)(ks, K) := Ny /Rd dqv(ks — q) <ql¢(n—1)> .
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The first Born approximation

In the first Born approximation

(pl) = (plk) + G(p)w(p — k),

we have

f(ks, k) ~ fV(k,, k) = Ny (ks — k).
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Since
ks —k € Py, = {d| |||l < 2k}
we conclude that

@ Fourier component of the potential v(p) does not
contribute in f if ||p| > 2k.

© The scattering amplitudes of the potentials v; and vy are
indistinguishable at wave-numbers k¥’ < k if

01(p) = v2(p)  for Ipl| < 2Fk.
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A stronger sufficient condition

Two dimensions: In the first Born approximation, the scattering
amplitudes of the potentials v; and v are indistinguishable at
wave-numbers &’ < k if

ﬁl(vapy) = 62(pzv7py) for ‘py’ < 2%.
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Example
nle) =g@dl) ey = glo)
U1 (p;);spy) = (}([)1) @2(}%,]93;) = g(pI)X[fﬁ,[ﬂ (py)

X[a,5) (%) is the characteristic function of the interval [a, b], defined as:

1 ifzé€la,b
Xa,b) (T) = { [. }

0 otherwise
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Consider a unit vector u and suppose that p = (p1,p,) where
p,:=u-p,and p; :=p — pu. Let ¥} := [I v(x)II; in which

. ok
Hk’ = / dPL / dpu ‘PLPO <pL:p\ | )
JS| J—k

and consequently

7 _ w(p - Q) if Pi—q € [_2k7 Qk]
<p|"f/k|q> a { 0 otherwise

The potential v(X) and “l///; are indistinguishable at scattering
processes with wave number k' < k unless we go beyond the first
Born approximation.
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The propagating wave approximation

The propagating wave approximation is the approximation
method, in which ¥} replaces v(Z) in the Lippmann-Schwinger
equation.

In this approximation, the scattering amplitude at k' < k is
identical for all potentials v with the same o(p), p, € [—2k, 2k].
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Suppose

k
k =/ dzp/ dpy |p) (P
R2 —k

Solutions to the Lippmann-Schwinger equation

) pwa = 1K) + G(D) % [¥) pwa »

are given by the Born series

<p|1/}</ﬂ/)>PWA X[—k,k] pU /]Rz d2 / dayw p q) <q|¢(” 1)>PVVA
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(n) k. k) = _/ / -
feowa (Ks, k) R2d q dqy O( <Q|¢ >PWA,
W >PwA k) and consequently f(1) fl(Dlv)VA

Pk, K) = fowa (ks k) = D7 [F0 (k) = iy (ke k)

n=2
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Second Born approximation

S (ks k) = [P (ks k) — fiha (ks k)
1 "o B _
= ) / qu/ dqu(ks*Q) G(q)9(q—k)
™ Jr? JR\[~k,k]

1 . )
= —7/dy/dX1/dX2 {U(Xl)U(XQ) e~ ks X1 gikexs
47

etkllyey+x2—x || |: sin k:y] }

lyey +x2 — x| Ty

where e, denotes the unit vector along the y direction.
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Potentials with exact propagating wave approximation

v(p) =0 for p, <O.
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In one dimension, scattering potentials with this property are
known to be unidirectionally invisible for all wavenumbers.

Q@ S. A. R. Horsley, M. Artoni and G. C. La Rocca, Spatial
Kramers-Kronig relations and the reflection of waves, Nature Photonics
9, 436-439 (2015).

Q S. Longhi, Wave reflection in dielectric media obeying spatial
Kramers-Kronig relations, EPL 112, 64001 (2015).

@ S. A R. Horsley and S. Longhi, One-way invisibility in isotropic
dielectric optical media, Amer. J. Phys. 85, 439-446 (2017).

@ W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He,

Deformable broadband metamaterial absorbers engineered with an
analytical spatial Kramers-Kronig permittivity profile, Laser Photonics
Rev. 11, 1600253 (2017).

22 /26



Propagating wave approximation
00®000

Potentials with exact propagating wave approximation

For such potentials the Born series is given by

<p!¢") /dz/ dgy w(p — q)<ql¢" 1>
Lewa ... |

(plY) for py < —k.

.

For p, < —k, {p[¢¥) = (pk) = 0. Assuming (p[»®™~V) =0,
the iterative formula gives <p]¢(")> —0. =

A
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Potentials with exact propagating wave approximation

The iterative formula is given by

<p!¢(”)> = 0(py + k)G(p) /R2 d*q /jj dgyw(p — q) <q!w(”_1)> :

where 6 denote the Heaviside function, i.e., 6(z) equals 0 and 1, for
x < 0 and x > 0 respectively.
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Potentials with exact propagating wave approximation

Comparing this result with

<p|¢(n)>PWA - X[fk,kJ(py)G(p)/z qu/i dagyw(p - a) (alv V)

R PWA

we confirm the following theorem.

The scattering amplitude computed in the propagating wave
approzimation is exact for potentials v if v(p) =0 for p, < 0.
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Potentials with exact propagating wave approximation

Thank you!
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