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Lippmann-Schwinger Propagating wave approximation

Overview

1 The Lippmann-Schwinger equation and the Born
approximation.

2 The Propagating-wave approximation: a nonperturbative
approximation scheme for performing scattering
calculations in two and three dimensions.

3 Complex potentials for which this approximation scheme is
exact.
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Lippmann-Schwinger Propagating wave approximation

Scattering in D > 1

A linear scattering process in a d ≥ 2 dimensional setup can be
modeled by an incident plane waves that scatters o� a short
range potential v : Rd → C.
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Lippmann-Schwinger Propagating wave approximation

The scattering data is encapsulated in the scattering amplitude
f according to

ψ(x) → ⟨x|k⟩+ (2π)−
d
2 f(ks,k)

eik∥x∥

∥x∥
d
2

for ∥x∥ → ∞,

where x denotes the location of the detector, ks := k x
∥x∥ ,

k := ∥k∥, and ⟨x|k⟩ = (2π)−d/2eik·x.
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Lippmann-Schwinger Propagating wave approximation

The Lippmann-Schwinger equation

The scattered wave ψ : Rd → C solves the Lippmann-Schwinger
equation

|ψ⟩ = |k⟩+G(p̂)v(x̂) |ψ⟩ ,

where G(p̂) := (k2 − p̂2 + iε)−1, ε→+ 0 and

|ψ⟩ :=
∫
Rd

dx |x⟩ψ(x).
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Lippmann-Schwinger Propagating wave approximation

The Lippmann-Schwinger equation in the momentum
representation reads

⟨p|ψ⟩ = ⟨p|k⟩+G(p)

∫
Rd

dqw(p− q) ⟨q|ψ⟩ ,

where
w(p− q) := ⟨p|v(x̂)|q⟩ = (2π)−dṽ(p− q),

and ṽ : Rd → C denotes the Fourier transform of v.
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Lippmann-Schwinger Propagating wave approximation

Born series

This equation is solved iteratively by the Born series

⟨p|ψ⟩ =
∑
n=0

〈
p|ψ(n)

〉
,

in which the zeroth term
〈
p|ψ(0)

〉
= ⟨p|k⟩ and the n-th term is

given by iteration〈
p|ψ(n)

〉
= G(p)

∫
Rd

dqw(p− q)
〈
q|ψ(n−1)

〉
for n ∈ N.
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Lippmann-Schwinger Propagating wave approximation

Asymptotically, i.e., for ∥x∥ → ∞,

Schrödinger equation → p̂2 |ψ⟩ = k2 |ψ⟩

ψ(x) →
∫
Sk

dp ⟨x|p⟩ ⟨p|ψ⟩

To compute the scattering amplitude f we only need to
compute ⟨p|ψ⟩ for p ∈ Sk := {p|p ∈ Rd, ∥p∥ = k}.
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Lippmann-Schwinger Propagating wave approximation

Using∫
Sk

dp ⟨x|p⟩G(p)w(p−k) =

∫
dx′ ⟨x|G(p̂)|x′⟩

∫
Sk

dp ⟨x′|p⟩w(p−k),

and

⟨x|G(p̂)|x′⟩ → (2π)
d
2Nd

eik∥x∥

∥x∥
d−1
2

⟨ks|x′⟩ for ∥x∥ → ∞,

where in d = 2 and d = 3 dimensions Nd equals N2 = −
√

i
8πk and

N3 = − 1
4π respectively, we obtain

ψ(n)(x) → (2π)
d
2Nd

eik∥x∥

∥x∥
d
2

∫
Rd

dqw(ks − q)
〈
q|ψ(n−1)

〉
for ∥x∥ → ∞.
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Lippmann-Schwinger Propagating wave approximation

Thus, the scattering amplitude is given by

f(ks,k) =
∑
n=1

f (n)(ks,k),

where

f (n)(ks,k) := Nd

∫
Rd

dq ṽ(ks − q)
〈
q|ψ(n−1)

〉
.
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Lippmann-Schwinger Propagating wave approximation

The �rst Born approximation

In the �rst Born approximation

⟨p|ψ⟩ = ⟨p|k⟩+G(p)w(p− k),

we have
f(ks,k) ≈ f (1)(ks,k) = Nd ṽ(ks − k).
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Lippmann-Schwinger Propagating wave approximation

Since
ks − k ∈ D2k = {q| ∥q∥ ≤ 2k}

we conclude that

1 Fourier component of the potential ṽ(p) does not
contribute in f if ∥p∥ > 2k.

2 The scattering amplitudes of the potentials v1 and v2 are
indistinguishable at wave-numbers k′ < k if

ṽ1(p) = ṽ2(p) for ∥p∥ ≤ 2k.
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Lippmann-Schwinger Propagating wave approximation

A stronger su�cient condition

Two dimensions: In the �rst Born approximation, the scattering
amplitudes of the potentials v1 and v2 are indistinguishable at
wave-numbers k′ < k if

ṽ1(px, py) = ṽ2(px, py) for |py| ≤ 2k.
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Lippmann-Schwinger Propagating wave approximation

Example

v1(x, y) = g(x)δ(y) v2(x, y) = g(x)
sinβy

πy

ṽ1(px, py) = g̃(px) ṽ2(px, py) = g̃(px)χ[−β,β](py)

χ[a,b](x) is the characteristic function of the interval [a, b], de�ned as:

χ[a,b](x) :=

{
1 if x ∈ [a, b]

0 otherwise
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Lippmann-Schwinger Propagating wave approximation

Consider a unit vector u and suppose that p = (p⊥, pq) where
pq := u · p, and p⊥ := p− pqu. Let V̂k := Π̂kv(x̂)Π̂k in which

Π̂k :=

∫
S⊥

dp⊥

∫ k

−k
dpq |p⊥, pq⟩ ⟨p⊥, pq| ,

and consequently〈
p|V̂k|q

〉
=

{
w(p− q) if pq − qq ∈ [−2k, 2k]

0 otherwise

Lemma

The potential v(x̂) and V̂k are indistinguishable at scattering

processes with wave number k′ ≤ k unless we go beyond the �rst

Born approximation.
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Lippmann-Schwinger Propagating wave approximation

The propagating wave approximation

De�nition

The propagating wave approximation is the approximation
method, in which V̂k replaces v(x̂) in the Lippmann-Schwinger
equation.

Remark

In this approximation, the scattering amplitude at k′ < k is
identical for all potentials v with the same ṽ(p), py ∈ [−2k, 2k].
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Lippmann-Schwinger Propagating wave approximation

Suppose

Π̂k :=

∫
R2

d2p

∫ k

−k
dpy |p⟩ ⟨p| .

Solutions to the Lippmann-Schwinger equation

|ψ⟩PWA = |k⟩+G(p̂)V̂k |ψ⟩PWA ,

are given by the Born series〈
p|ψ(n)

〉
PWA

= χ[−k,k](py)G(p)

∫
R2

d2q

∫ k

−k

dqyw(p−q)
〈
q|ψ(n−1)

〉
PWA
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Lippmann-Schwinger Propagating wave approximation

f
(n)
PWA(ks,k) = − 1

4π

∫
R2

d2q

∫ k

−k
dqy ṽ(ks − q)

〈
q|ψ(n−1)

〉
PWA

.

Remark∣∣ψ(0)
〉
PWA

= |k⟩ and consequently f (1) = f
(1)
PWA.

f(ks,k)− fPWA(ks,k) =
∑
n=2

[
f (n)(ks,k)− f

(n)
PWA(ks,k)

]
,
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Lippmann-Schwinger Propagating wave approximation

Second Born approximation

δf (2)(ks,k) := f (2)(ks,k)− f
(2)
PWA(ks,k)

=
1

8π3

∫ ∞

R2

d2q

∫
R\[−k,k]

dqy ṽ(ks − q)G(q) ṽ(q− k)

= − 1

4π

∫
dy

∫
dx1

∫
dx2

{
v(x1) v(x2) e

−iks·x1eik·x2

× eik∥yey+x2−x1∥

∥yey + x2 − x1∥

[
δ(y)− sin ky

πy

]}
.

where ey denotes the unit vector along the y direction.
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Lippmann-Schwinger Propagating wave approximation

Potentials with exact propagating wave approximation

Potentials with exact propagating wave approximation

ṽ(p) = 0 for py ≤ 0.
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Lippmann-Schwinger Propagating wave approximation

Potentials with exact propagating wave approximation

In one dimension, scattering potentials with this property are
known to be unidirectionally invisible for all wavenumbers.

1 S. A. R. Horsley, M. Artoni and G. C. La Rocca, Spatial

Kramers-Kronig relations and the re�ection of waves, Nature Photonics
9, 436-439 (2015).

2 S. Longhi, Wave re�ection in dielectric media obeying spatial

Kramers-Kronig relations, EPL 112, 64001 (2015).

3 S. A. R. Horsley and S. Longhi, One-way invisibility in isotropic

dielectric optical media, Amer. J. Phys. 85, 439-446 (2017).

4 W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He,
Deformable broadband metamaterial absorbers engineered with an

analytical spatial Kramers-Kronig permittivity pro�le, Laser Photonics
Rev. 11, 1600253 (2017).

22 / 26



Lippmann-Schwinger Propagating wave approximation

Potentials with exact propagating wave approximation

For such potentials the Born series is given by〈
p|ψ(n)

〉
= G(p)

∫
R2

d2q

∫ py

−∞
dqy w(p− q)

〈
q|ψ(n−1)

〉
.

Lemma

⟨p|ψ⟩ for py < −k.

Proof.

For py < −k,
〈
p|ψ(0)

〉
= ⟨p|k⟩ = 0. Assuming

〈
p|ψ(n−1)

〉
= 0,

the iterative formula gives
〈
p|ψ(n)

〉
= 0.
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Lippmann-Schwinger Propagating wave approximation

Potentials with exact propagating wave approximation

The iterative formula is given by〈
p|ψ(n)

〉
= θ(py + k)G(p)

∫
R2

d2q

∫ py

−k
dqy w(p− q)

〈
q|ψ(n−1)

〉
,

where θ denote the Heaviside function, i.e., θ(x) equals 0 and 1, for

x < 0 and x > 0 respectively.
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Lippmann-Schwinger Propagating wave approximation

Potentials with exact propagating wave approximation

Comparing this result with〈
p|ψ(n)

〉
PWA

= χ[−k,k](py)G(p)

∫
R2

d2q

∫ k

−k

dqyw(p− q)
〈
q|ψ(n−1)

〉
PWA

,

we con�rm the following theorem.

Theorem

The scattering amplitude computed in the propagating wave

approximation is exact for potentials v if ṽ(p) = 0 for py ≤ 0.
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Lippmann-Schwinger Propagating wave approximation

Potentials with exact propagating wave approximation

Thank you!
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