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Problem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivationProblem & motivation

ProblemProblemProblemProblemProblemProblemProblemProblemProblemProblemProblemProblemProblemProblemProblemProblemProblem

We consider the statistical mechanics and thermodynamics of rotating with constant angular
velocity ideal gas of relativistic classical particles with nonzero spin at finite temperature.

MotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivation

• Development of quasi-classical theory;
• Chiral effects in rotating systems;
• Universal description of particles of all spins;
• Explicit expressions of functions and quantities.

The talk is based on joint work with D.S. Kaparulin, arXiv:2302.05639.
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Historical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notes

• Maxwell-Boltzmann distribution (Maxwell, 1878):

f (x ,p) =
1

z0
exp

(
− p2

2mkT
+

m[Ω, x ]2

2kT

)
; (1)

• Generalized Maxwell-Boltzmann distribution
(Bubenchikov, Kaparulin, Nosyrev, 2022):
arXiv:2205.06682.

Figure: James Clerk Maxwell
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Historical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notesHistorical notes

• Gibbs distribution for rotating system (Gibbs, 1902):

f (x ,p, ....) =
1

z0
exp

(
− ε(x ,p, ....)− (Ω, j (x ,p, ....))

kT

)
; (2)

• Maxwell-Jüttner distribution (Jüttner, 1911; Synge, 1957):

f (x ,p) =
1

z0
exp

(
− mc2γ

kTγ

)
,

1

γ
=

√
1− [Ω, x ]2

c2
. (3)

• Quantum distributions: arXiv:0911.0864, 1812.08886,
1811.04409, etc. Figure: Josiah Willard Gibbs

5 / 22



Model of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particle

Microscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problemsMicroscopic description problems

• Construction of the phase-space and invariant measure on it.
• Expressing energy-momentum in terms of phase-space coordinates.

We consider a model of massive relativistic spinning particle with the mass m and spin s with
the action functional (Deriglazov, Pupasov-Maksimov, 2013):

S =

∫ {
(p, ẋ) + (π, ω̇)− λp((p, p) +m2c2)− λω((ω, ω)− a2)−

−λπ((π, π)− b2)− λpω(p, ω)− λpπ(p, π)− λωπ(ω, π)

}
dτ ,

(4)

with xµ being space-time position of the particle, pµ - canonically conjugated momenta, ωµ

and πµ - spinning sector variables, µ = 0, 1, 2, 3; λp, . . . , λωπ - Lagrange multipliers, τ - time.

Parameters a and b determine the particle’s spin by the rule: a2b2 = ℏ2Σ2 = ℏ2s(s + 1) .
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Model of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particleModel of relativistic spinning particle

Since physical observables of the model are functions of momentum and total angular
momentum, we introduce:

jµν = xµpν − xνpµ + sµν , sµν = ωµπν − ωνπµ , (5)

where jµν - total angular momentum, sµν - spin angular momentum; µ , ν = 0, 1, 2, 3

The physical phase-space of the considered model is a R6 × S2 bundle with three spacial
coordinates of the particle, three linear momentum components and two variables, that
determine the direction of spin.
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Parametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical statesParametrization of physical states

By using (1+3) decomposition, we express space-time quantities in phase-space coordinate
terms:

xµ = (ct, x) , pµ = mcγ(1,β) , sµν = ℏΣ(γ[β, c], γc − γ2

γ + 1
β(β, c)) . (6)

where bold symbols denote spacial coordinates of the corresponding vectors, γ and β being
relativistic factors, c - speed of light, and c = c(α◦, β◦) - Euclidean unit vector:

c(α◦, β◦) = (cosα◦ sinβ◦, sinα◦ sinβ◦, cosβ◦) . (7)

In the result, the coordinates on the physical phase-space: x , p, and α◦, β◦.
And invariant measure on it:

dΓ =
(2s + 1)dxdp sinβ◦dα◦dβ◦

4π(2πℏ)3
. (8)
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One-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution function

For the construction of the statistical mechanics, we use the special form of Gibbs distribution
for a rotating (with constant angular velocity Ω and temperature T ) system, which mass
center is at rest:

f0(ε, j ) =
1

z0
exp

(
− ε− (Ω, j )

kT

)
, (9)

with ε = mc2γ - particle energy, k - Boltzmann constant, z0 - partition function. Zero index
symbolizes one-particle distribution.

By systematic substitution of quantities (5), (6) in (9), we obtain the generalized
Maxwell-Jüttner distribution for a rotating gas of spinning particles:

f0(x , p, α◦, β◦) =
1

z0
exp

(
− mc2γ

kT
+

mcγ(Ω, x ,β)
kT

+
ℏΣ
kT

(Ω, γc − γ2

γ + 1
β(β, c))

)
. (10)
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One-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution functionOne-particle distribution function

The partition function (per particle) z0 is determined from the normalizing condition with
respect to invariant measure:

z0 =

∫
exp

(
− mc2γ

kT
+

mcγ(Ω, x ,β)
kT

+
ℏΣ
kT

(Ω, γc − γ2

γ + 1
β(β, c))

)
dΓ. (11)

Immediate conclusions:
• The distribution function by spins is asymmetric if Ω is nonzero;
• Spinning corrections are proportional to ratio ϑ ≡ ℏΣΩ/kT .

From formula (10) special distributions can be derived, such as position-momenta
distribution (arXiv:0911.0864) and angular distribution.
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Distribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frameDistribution function in the rotating frame

Distribution function (10) can be rewritten in the rotating frame connected to the reservoir
with gas. After Lorentz transformations applied, the distribution function taking the following
form:

f0 =
1

z0
exp

(
− mc2γ

kTγ
+

ℏΣγ
kT

(Ω, γc + γ[β, [β, c]]− γ2

γ + 1
β(β, c))

)
, (12)

where vectors β, c and factor γ - determined in the rotation frame, and the notation is used:

β =
1

c
[Ω, x ] , γ =

1√
1− β2

. (13)

The leading term of the exponent determines the usual Maxwell-Jüttner distribution for
spinless particle, and the second contribution determines the spinning correction.

The translational and spinning degree of freedom do not decouple even in the rotating frame.
This corresponds to a special form of spin-orbital interaction in relativistic gas.
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Angular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution functionAngular distribution function

Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?Why are we interested in it?

Because the angular variables α◦ and β◦ determine the direction of particle’s spin. In other
words, the current distribution function characterizes the behavior of spinning degree of
freedom in the rotating systems.

The angular distribution function can be explicitly derived from (12), by the following rule:

fαβ(α
◦, β◦) =

1

zαβ

∫
exp

(
− γ

θγ
+ ϑγΦ

)
γdp
m3c3

, (14)

where θ = kT/mc2 - dimensionless temperature, zαβ - partition function, Φ(α◦, β◦, ξ◦, ζ◦, γ)
- term, proportional to spinning corrections (ξ◦, ζ◦ - angles in auxiliary rotating frame, where
Ω is co-directed with rotating axis), dp(ξ◦, ζ◦, γ) - volume element in the momenta space.

We consider particle’s position x here as a parameter.
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Partition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition functionPartition function

Normalizing condition for fαβ:

1

4π

∫
fαβ sinβ

◦dα◦dβ◦ = 1 . (15)

Condition (15) leads us to the explicit form of partition function zαβ:

zαβ = 4πγ

{
θ

(
1 + ϑ2

1 + 10θ2β2

6

)
K2(1/θ) + θ2ϑ2

1 + β2(1 + 30θ2)

3
K3(1/θ)

}
, (16)

where Ka(1/θ), a = 2, 3 - modified Bessel’s functions of the second kind, θ = γθ, ϑ = γϑ.

Generally speaking, obtained partition function (16) can not be called such yet, because we
need to integrate it by particle’s position.
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Angular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variableAngular distribution functions by a singular variable

Combination of formulas (14) and (16) gives us a desired angular distribution function. Since
this is a two-variable function, the plot of it is going to be three-dimentional, that is not so
convenient for analysis. For this reason, we factorize it into two separate functions.

General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:

fα(α
◦) =

1

2

∫
fαβ sinβ

◦dβ◦ :

fβ(β
◦) =

1

2π

∫
fαβdα

◦ :

Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:Leading order:

fα = 1−5θK2(1/θ) + (1 + 30θ2)K3(1/θ)

6θK2(1/θ)
θβ2ϑ2 cos(2α◦)+. . .

(17)

fβ = 1 +
(1− 2θ)K2(1/θ) + 2K3(1/θ)

3K2(1/θ)
ϑ cosβ◦ + . . . (18)
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Angular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plotsAngular distribution plots

Figure: fα distribution with θ = 1, ϑ = 0.3. Figure: fβ distribution with β = 0.001, θ = 10.15 / 22



Thermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gasThermodynamics of rotating gas
Thermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problemsThermodynamic problems

• Computation of the partition function z0.
• Obtaining explicit expressions for thermodynamic quantities such as total angular
momentum j , entropy S , and internal energy U.

We consider the thermodynamics of a slowly rotating relativistic ideal gas of spinning particles
in a limited cylinder with the radius R and volume V . We assume that linear velocity of
reservoir rotation is much smaller than the speed of light (βm = ΩR/c ≪ 1) and magnitude of
chiral effects is small (ϑ ≪ 1).

According to the expression (11), after integration, with respect to the reservoir’s shape, we
have:

z0 =
4πm3c3(2s + 1)V

(2πℏ)3
θK2(θ)

(
1+β2

m

K3(θ)− 2θK2(θ)

4θK2(θ)
+ϑ2K2(θ) + 2θK3(θ)

6K2(θ)
+ . . .

)
. (19)
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General thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulasGeneral thermodynamic formulas

To obtain early announced thermodynamic quantities, we have to determine partition function
z of classical ideal gas (consisting of N particles) and thermodynamic potential Φ by the rules:

z =
1

N!
(z0)

N , Φ = −kT ln z . (20)

Formulas (19) and (20) lead us to the explicit form of thermodynamic potential:

Φ = −kTN

{
ln

4πm3c3(2s + 1)V

N(2πℏ)3
θK2(θ)+ β2

m

K3(θ)− 2θK2(θ)

4θK2(θ)
+ϑ2K2(θ) + 2θK3(θ)

6K2(θ)
+ 1

}
.

(21)

As in (19), the leading term of the expression determines non-rotating relativistic gas, and two
others terms account rotational and spinning corrections.
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Thermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantitiesThermodynamic quantities

General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:General form:

j = −∂Φ

∂Ω
:

S = −∂Φ

∂θ
:

Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:Explicit form:

j = N

{
mΩR2

2

K3(θ)− 2θK2(θ)

K2(θ)
+

ℏΣϑ
3

K2(θ) + 2θK3(θ)

K2(θ)

}
.

(22)

S = kN

{
ln

8πm3c3(2s + 1)V

N(2πℏ)3
θ3 +

1

2
β2
m +

4

3
θ2ϑ2 + 4

}
. (23)

Both terms in the (22) have clear physical interpretation. The mR2Ω/2 contribution have a
sense of orbital angular momentum of spinless relativistic gas. It is interesting to note that the
momentum of inertia of the gas depends on temperature. The second term correspond to the
average value of spin ⟨s⟩. Internal energy can be found from connection: Φ = U − TS − Ωj .

Entropy (23) was computed in the ultra-relativistic limit.
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In the low temperature limit, the average value of spin in (22) corresponds to the
non-relativistic polarization expression (Bubenchikov, Kaparulin, Nosyrev, 2022):

⟨s⟩ = ℏΣϑ
3

K2(θ) + 2θK3(θ)

K2(θ)
θ→0−−−→ ℏΣϑ

3
. (24)

Also, we can consider the specific rotational polarizability χ of spinning degree of freedom,
that determines by the rule and has an obvious form:

χ ≡ ∂⟨s⟩
∂Ω

∣∣∣∣
Ω=0

=
ℏ2Σ2

3mc2
K2(θ) + 2θK3(θ)

θK2(θ)
. (25)
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Spin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plotSpin polarization plot

With respect to constants, we can obtain the
visual representation of χ(θ) dependence.

The polarizability decreases for low
temperatures and increases for high ones, with
a visible minimum at the intermediate value of
temperature: θm = 0.3859.., with the extreme
value: χm = 2.3044..ℏ2Σ2/mc2.

Figure: Specific polarizability of relativistic gas
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Conclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlookConclusion and outlook
The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:The following results were obtained:

• Statistical mechanics and thermodynamics of classical rotating ideal gas of relativistic spin-
ning particles have been developed;

• A Generalized Maxwell-Jüttner distribution function by positions, momenta and spin direc-
tions has been derived (including special forms);

• Polarization of spinning degree of freedom is found as the function of angular velocity and
temperature. Minimum of polarization was observed.

• Presence of chiral phenomena in the model was proved.

Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:Further research:
• Massless particles with continuous helicity;

• Systems with self-interaction;

The study is supported by the RSF grant No. 21-71-10066.
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