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Characteristic initial value problem
Before 1960 it was know that linear pertubations hab of the Minkowski metric ηab =
diag(−1, 1, 1, 1) obeyed the wave equation (c = G = 1)(

− ∂2

∂t2
+ δij

∂2

∂x i∂x j

)
hab = 0,

where the standard Cartesian coordinates x i = x1, x2, x3 satisfy the harmonic coordinate
condition to linear order. The gauge freedom of these linear perturbations raised doubts
about the physical properties of gravitational waves.

The hypersurfaces u = t − r = const, v = t + r = const, with r2 = δijy
iy j , are

characteristic hypersurfaces of the wave equation, i.e. they are hypersurfaces along
which wavefronts can travel.

• A second order hyperbolic PDE allows a well-posed Cauchy problem on initial space-
like hypersurfaces. If the initial hypersurfaces is null (characteristic), the standard Cauchy
data, �elds and their �rst derivatives, are not independent. It will be discussed later.
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Characteristic surface = null surface

These characteristic hypersurfaces are also null hypersurfaces, i.e. their normals,
ka = −∇au and na = −∇av are null,

ηabkakb = ηabnanb = 0

• A peculiar property of null hypersurfaces that their normal direction is also tangent to
the hypersurface, ka = ηabkb is tangent to u = const.
The curves tangent to ka are null geodesics, called null rays, and generate the u = const
outgoing null hypersurfaces.

For di�erential geometry of null surfaces see Gourgoulhon and Jaramillo (2006).

• Bondi used such a family of outgoing null rays forming these null hypersurfaces to build
spacetime coordinates for describing outgoing gravitational waves.
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Bondi-Sachs metric
Sachs (1962): Given any normal-hyperbolic Riemannian manifold with line element ds2

and in it any point P , there exists at least one set of coordinates u = x0, t = x1, θ =
x2, ϕ = x3 such that in a �nite neighborhood of P ,

ds2 = gabdx
adxb = −V

r
e2βdu2− 2e2βdudr + r2hAB(dx

A−UAdu)(dxB −UBdu) (⋆),

where A,B, · · · = 2, 3; hAB is a conformal metric with two degrees of freedom, det(hAB) =
b(u, θ, ϕ).

(⋆) holds if and only if the coordinates u, r , θ, ϕ have the following geometric properties
(i) the hypersurfaces u = const are everywhere tangent to the local lightcone;
(ii) r varies along the light (null) rays; r is chosen to be an areal coordinate, such that
det[gAB ] = r4det[qAB ], qAB is the unit sphere metric.
(iii) the angular coordinates xA, (A,B,...=2,3) are constant along the null rays

V , β,UA and hAB are any six functions of the coordinates.

Irina Pirozhenko BLTP JINR Yerevan, 2023 6 / 33



Introduction Polyhomogenous spacetimes Examples from ED and GR Ñïèñîê ëèòåðàòóðû

Asymptotic �atness
The approach of Bondi, Penrose ans Sachs imposed some restrictions on the space-time
properties.
• Space-time should be asymptotically �at, possessing the Euclidean topology far from
isolated source.

In the asymptotic inertial frame, often referred to as a Bondi frame, the metric approaches
the Minkowski metric at null in�nity J + [a null surface with (r = ∞, u, xA)], so that

lim
r→∞

β = lim
r→∞

UA = 0, lim
r→∞

V

r
= 1, lim

r→∞
hAB = qAB .

Thus the Minkowski metric in outgoing null spherical coordinates (u, r , xA) corresponding
to the �at space version of the Bondi-Sachs metric is

ds2 = gabdx
adxb = −du2 − 2dudr + r2qABdx

AdxB .

These restrictions were based on an intuitive analogy with a retarded solution for a point
source in electrodynamics, which can be represented as expansion in multipoles.
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The Bondi-Sachs solution
In Bondi-Sachs approach the Einstein equations,

Rab −
1

2
gabR = 8πTab,

form a hierarchy (4 hypersurface equations, 2 standard equations, 1 trivial equation, and
3 supplementary conditions ).
• For integrating it is assumed that matter satis�es the divergence-free condition∇bT

b
a =

0, the matter sources are con�ned to a compact region. The solution has an asymptotic
1/r expansion in an asymptotic inertial frame.

• This ansatz of a 1/r-expansion of the metric leads to the peeling property of the Weyl
tensor in the spin-coe�cient approach Newman and Penrose (1962)
The projections Ψi of the Weyl tensor onto the tetrad, corresponding to Bondi-Sachs
coordinates with radial coordinate r chosen as an a�ne parameter along the outgoing
null geodesics, should have the asymptotics:

Ψi = Ci (u, θ, ϕ)r
i−5 +O(r i−6), i = 0..4.
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• The conformal 2-metric hAB on an initial null hypersurface N0, u = u0, is assumed to
have the asymptotic 1/r expansion

hAB(u0, r , x
C ) = qAB +

cAB(u0, x
E )

r
+

dAB(u0, x
E )

r2
+ ...

• The 1/r coe�cient of the conformal 2-metric hAB for retarded times u ∈ [u0, u1], u1 >
u0,

cAB(u, x
C ) := lim

r→∞
r(hAB − qAB)

describes the time dependence of the gravitational radiation. Its retarded time derivative

NAB =
1

2
∂ucAB(u, x

E ),

is called the news tensor, and it determines the energy �ux of gravitational radiation.

•The BS formalism provided the �rst convincing evidence that that mass loss due to
gravitational radiation is a nonlinear e�ect of general relativity and that the emission
of gravitational waves from an isolated system is accompanied by a mass loss from the
system.
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Polyhomogeneous spacetimes

In general case, the approximate solutions of Einstein equations near J + admit not
only power, but also logarithmic terms of the form lnm r/rn. Such spaces are called
polyhomogeneous, [Valiente Kroon (1999b)] or logarithmically asymptotically �at [Winicour
(1985)].

The peeling property was historically related to the �Outgoing Radiation Condition�
[Valiente Kroon (1999a)] being an analog of the Sommerfeld condition in electrodynamics.
Bondi, Sachs and Penrose used Outgoing Radiation Condition in order to eliminate
logarithmic terms in the asymptotics for the metric, as far as non-analyticity was erroneously
associated with the presence of an incoming radiation.

Subsequent analysis showed that Bondi-Sachs-Penrose requirement for the metric asymptotics
is excessively strict. Such solutions may exist, but require speci�c initial data.

The Bondi-Sacks-Penrose approach can be adapted accordingly. Bondi mass and the
outgoing energy �ux may be related with logarithmic terms in the expansion for metrics.
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ED with null cosmic string
In [Fursaev and Pirozhenko (2023)] we studied perturbations of EM �elds of point electric
charges induced by close passage of a null cosmic string. Then we generalized this result
to point magnetic-dipole-like sources. The asymptotics for angular components of the
vector potential at at future null in�nity looks as

AB(r , u,Ω) ≃ aB(u,Ω) + bB(Ω) ln r/ϱ+ O(r−1 ln r) , (1)

where u is the retarded time, vector �elds aB , bB are in the tangent space of S2, and
ϱ is a dimensional parameter related to the approximation. The asymptotic holds if r is
large enough with respect to u and with respect to the impact parameter between the
string and the source. Equation (1) yields a �nite energy �ux at large r

lim
r→∞

∂tE (R, t) =

∫
dΩ ȧAȧ

A ,

where ȧA ≡ ∂UaA, and index A is risen with the help of the metric on S2. The logarithmic
term in (1) appears since the Sommerfeld radiation condition is violated in the presence
of null strings. This term, however, does not a�ect the �ux.
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Null strings (massless, tensionless)

From a massive cosmic string at rest along z-axis

ds2 = −dt2 + dz2 + dr2 + (1− 4Gµ)2r2dΘ2, r2 = x2 + y2

−→ Aichelburg-Sexl boost

coshχ = (1− v2/c2)−1/2 → ∞, E = mc2 coshχ → finite

−→ Kerr-Schield metric

ds2 = −dudv + ω|y |δ(u)du2 + dy2 + dz2, ω ≡ 8πGε

ε - energy per unit length, u = t − x , v = t + x .

C. Barrabes, P.A. Hogan, W. Israel, Phys.Rev. D66 (2002) 025032.
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Classical ED with a null cosmic string
We consider a null cosmic string stretched along z-axis and moving along x-axis. The
space-time is locally Minkowsky R1,3, and in the light-cone coordinates the metric reads

ds2 = −dvdu + dy2 + dz2, v = t + x , u = t − x .

• The string world surface S : u = y = 0
• The string event horizon H: u = 0
H+: u = 0, y > 0 (right),
H−: u = 0, y < 0 (left)

The trajectories of particles and light rays at u < 0 and u > 0 are called ingoing and
outgoing respectively.
Irina Pirozhenko BLTP JINR Yerevan, 2023 14 / 33



Introduction Polyhomogenous spacetimes Examples from ED and GR Ñïèñîê ëèòåðàòóðû

Null rotations
A parallel transport of a vector V along a closed contour around a null string with the
world-sheet u = y = 0 results in a null rotation,

V ′ = M(ω)V , ω ≡ 8πGE .

M. van de Meent, Geometry of Massless Cosmic Strings, Phys. Rev. D87 (2013) 025020

Null rotations (x ′)µ = Mµ
ν (ω) xν are de�ned as

u′ = u , v ′ = v + 2ωy + ω2u, y ′ = y + ωu, z ′ = z , (⋆)

Coordinate transformations M(ω) at u = 0 belong to Carroll group [Duval et al. (2014b)]
and induce the change of coordinates on H

xa = C a
b(ω)x̄

b or x = x̄+ 2ωyq , qa = δav ,

where x ≡ {v , y , z}. Matrices C a
b can be de�ned as C a

b = Ma
b.
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Initial data on the string horizon
The initial data on the string horizon H are related to the ingoing data via null rotations
taken at u = 0. To describe outgoing trajectories, one can introduce either R chart with a
cut on the left to the string, H− (u = 0, y < 0), or L-chart with a cut on the right to the
string, H+ (u = 0, y > 0). These descriptions are equivalent due to Lorenz invariance.

Let xµ and x̄µ be the coordinates above and below the horizon. In the R-charts the
transition conditions on H are

xµ = x̄µ |H+ , xµ = Mµ
ν (ω) x̄

ν |H− .

• At y < 0 the coordinate transformations are reduced to

v = v̄ + 2ωy , y < 0 .

• 4-velocities of particles and light rays change when crossing H. On the R-charts the
'right' trajectories (y > 0) behave smoothly across the horizon, while the `left' trajectories
(y < 0) are shifted along the v coordinate and change their direction under the null
rotation.
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Initial data for EM �eld (R-chart)
Let Āµ be a solution to the problem ∂µF̄

µν = j̄ν at u < 0. We need to solve ∂µF
µν = jν

at u > 0 with some initial conditions on null hypersurface H.

The currents are continuous on H and at u > 0 and u < 0 they are related on as

jµ(x) |H+= j̄µ(x) , jµ(x) |H−= Mµ
ν(ω)j̄

ν(x̄) ,

x̄ = x− 2ωyq , qi = δiv , x ≡ {v , y , z}.

Indices a, b, .. enumerate coordinates v , y , z on H. Indices a, b cannot be risen or lowered
since the metric ofH is degenerate.M c

a (ω),Ma
c(ω) coincide with corresponding components

of M ν
µ (ω).

The conditions on three components Ab, are

ab(x) = Ab(x) |H , b = v , y , z ,

ab(x) = āb(x) |H+ , ab(x) = M c
b (ω)āc(x̄) |H− ,

āb(x) = Āb(x) |H , b = v , y , z .
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Characteristic initial value problem for Maxwell equations
For the Maxwell equations the canonical coordinates and momenta can be determined by
using the Hamilton-Jacobi method from the variation of the action with H as a boundary,

Ab |H= ab , F ub |H= πb , b = v , y , z .

The data are subject to the constraint

∂vπv + ∂xπx + ∂yπy = −ju |H . (⋆)

The momenta πy = 2Fvy , πz = 2Fvz are determined by the initial data ab. The
momentum πv = 4Fuv is �xed by (⋆).

Since there is the gauge freedom in de�nition of πy , πz , the initial value problem on H
requires 2 independent data, twice less than that on space-like hypersurface.

If we �x the Lorentz gauge the initial data can be formulated as Aµ |H= aµ, where au
should be determined by the gauge condition. The remaining gauge freedom then leaves
2 independent data. Constraint follows from the gauge condition and equation for the v
component.
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The solution

We suppose that charged particles do not cross the left part of the horizon, j̄µ = 0 on
H−. This implies that jµ = j̄µ on H, that is the current in the R-chart is not a�ected
by the string. One can write a solution in the form

Aµ(x) = Āµ(x) + AS,µ(x) ,

Āµ as a solution in the absence of the string, −∞ < u < ∞,
AS ,µ is a perturbation caused by the string.

AS ,µ is a solution to a homogeneous characteristic initial value problem

∂µF
µν
S = 0 , AS ,b(x) |H= aS ,b(x) ,

aS ,b(x) |H+= 0 , aS,b(x) |H−= M c
b (ω)āc(x̄)− āb(x) ,

where FS,µν = ∂µAS ,ν − ∂νAS ,µ.

Irina Pirozhenko BLTP JINR Yerevan, 2023 19 / 33



Introduction Polyhomogenous spacetimes Examples from ED and GR Ñïèñîê ëèòåðàòóðû

The properties of the perturbation AS ,µ

i) vanishes in the limit ω → 0, where ω is the energy of the string;
ii) depends on the choice of the source jµ through initial data ;
ii) can be written as

AS ,µ(x) = Aω
µ(x)−Aµ(x) ,

Aω
µ(x

′) = M ν
µ (ω)Aν(x) , (x ′)µ = Mµ

ν (ω) x
ν ,

where Aµ(x) is a solution to homogeneous problem ∂µFµν = 0 with the following initial
data on H

Ab(x) |H+= 0 , Ab(x) |H−= āb(x) .

We use the Lorentz gauge condition ∂A = 0 since it is invariant under null rotations and
can be imposed globally on cosmic string space-time.

The Maxwell equations for the perturbation caused are reduced to

□AS ,µ = 0 , ∂AS = 0 .

The component Au follows from condition ∂A = 0.
Irina Pirozhenko BLTP JINR Yerevan, 2023 20 / 33
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The system

We consider perturbations AS,µ, which are solutions to the Maxwell equations for point-
like sources of electric and magnetic types.

We suppose that the source is at rest
at a point with coordinates xo = zo =
0, yo = a > 0. Since the string trajectory
is x = t, y = 0, we interpret a as
an impact parameter between the string
and the source. Electric or magnetic source
crosses the string horizon H+. S is the
world surface of the string.
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The point charges
Here the sources of the electric type are electric charges with the current

j0 = eδ(3)(x⃗ − x⃗o) , ji (x) = 0 i = 1, 2, 3 .

In the absence of the string the �eld is

Ā0(x) = eϕ(x) , Āi (x) = 0, ϕ(x , y , z) = − 1

4π

1√
x2 + (y − a)2 + z2

.

The sources of the magnetic type are described by the current

j0 = 0, ji (x) = εijkMj ∂kδ
(3)(x⃗ − x⃗o) .

where Mi is a magnetic moment. In the absence of a string the �eld is

Ā0(x) = 0, Āi (x) = εijkMj∂kϕ. (⋆)

We consider (⋆) as an approximation for a EM �eld of a body of with a magnetic moment
M. Under certain assumptions this approximation can be used to describe the EM �eld
of pulsars.
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Energy �ux

The energy of the EM �eld inside the sphere of the radius R with the center at the point
x i = 0 is

E (R, t) =

∫
r<R

d3x T00 ,

where Tµ
ν is the stress-energy tensor of the EM �eld,

Tµ
ν = −FµAFνA + δµν

1

4
FABFAB .

The energy density T00, is measured in the frame of reference where the charge is at
rest. The conservation law implies that

∂tE (R, t) = R2

∫
dΩ T r

U .
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Energy �ux at r ≫ a and r ≫ U
We have derived the following asymptotics of the solution at r ≫ a and r ≫ U

AS,µ(r ,U,Ω) ≃ 1

r
(aµ(U,Ω) + bµ(Ω) ln r/ϱ) +O(r−2) , µ = U, r ,

AS,B(r ,U,Ω) ≃ aB(U,Ω) + bB(Ω) ln r/ϱ+O(r−2) , B = θ, φ ,

ϱ is a dimensional parameter related to the approximation.

The T r
U component of the EMT is

T r
U = FUµF

rµ ≃ 1

r2
γAB ȧAȧB , ȧA ≡ ∂UaA,

and the energy �ux at large r is �nite:

lim
r→∞

∂tE (R, t) =

∫
dΩ γAB ȧAȧB =

∫
dΩ

(
˙⃗a2 − ( ˙⃗a · n⃗)2

)
The r.h.s. is given for components in Minkowsky coordinates, ni = x i/r . The calculation
of the �ux was our main goal.
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Some remarks about the energy �ux

• The energy �ux at I+, is determined only by the angular components of the perturbation
AS .
• Ā contributes to Fµν but does not contribute to the �ux, since Ā is static. Thus, the
energy �ux at I+, is determined only by the angular components of the perturbation AS .

By varying the parameter ϱ one adds to aA some term proportional to bA. This addition
does not a�ect the �ux since bA are static.

• Our solution does not satisfy the Sommerfeld radiation condition, as we consider the
problem with initial data at an in�nite null hypersurface A. Sommerfeld, Jahresber. d.

deutsch. math. Ver., 21, 309 (1912), A.N. Tikhonov, A.A. Samarsky, ZhETP 18, 243

(1948)
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The power of the radiation emitted to J +

∂tE (R, t) =

∫
dΩ γAB ȧAȧB =

∫
dΩfE (U,Ω) ,

• For U → ∞ the �ux density vanishes as (U/a)−2.
• The peak power is near U = 0. At U = 0, the �ux density reduces to

fE (0,Ω) =
e2

(2π)4
ω2

a2
(1− n2y )

2(1− nx)− n2y
.

Here nx = cos θ,ny = sin θ sinφ. The angular distribution has a pole-like singularity at
nx = 1. At U = 0 this point lies on the string world-sheet, and our approximation is not
valid.
• For small U the energy �ux is focused in the direction of string motion ,

fE (U)nx→1 =
e2

16π4

ω2

U2
, fE (U)nx→−1 =

e2

16π4a2
4ω2

(4 + (U/a)2)2
,

thus the energy � follows the string.
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Ðèñ. 1: The �ux density from an electric source observed in 4π geometry for di�erent values of

the Bondi coordinate U = t − r , U = 0.01, 0.1, 1, 10.
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An estimate of EM radiation due to null strings
• For an electrically charged source the power of the radiation pulse at the peak is

∂tE (R, t) ∼
e2

(2π)4
ω2

a2
.

If ω ≃ 10−12 (this is an upper limit on the energy of tensile cosmic strings from stochastic
gravitational-wave background), assume that e2/(4π) = 1/137 the peak power has the
order of magnitude 10−17 W

• For the radiation from magnetic charge,

∂tE (R, t) ∼
e2

(2π)4
ω2M2

a4
.

Consider a magnetar with magnetic �eld ∼ 1011 T . Then, a string passing in the near
zone at a distance a = 102 km, carries away an electromagnetic pulse

Ė ∼ 1017 W .

For comparison the radiation power of the Sun reaches 1026W .
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Conclusion
• We have studied electrodynamics in a the space-time with a straight null cosmic string.
The problem appeared to be characteristic problem with initial data imposed at the string
horizon. We considered two cases of point-like sources crossing the string horizon: sources
with an electric charge and sources with a magnetic moment.
• We have shown that null cosmic strings disturb electric �elds of charged sources and
produce electromagnetic (EM) pulses.
• An analogous e�ect exists in gravity: perturbations of gravitational �elds of massive
sources caused by null cosmic strings are radiated away in a form of gravitational wave
pulses.
• Perturbations generated by the strings are solutions to a characteristic Cauchy problem
where the initial data are set on the string horizon H and take into account the planar
supertranslations.
• Near the future null in�nity the resulting geometry, sourced by the sting and a point-like
mass, belongs to a class of so called polyhomogeneous spacetimes.
D.V. Fursaev, E.A. Davydov, V.A. Tainov, I.G. Pirozhenko, work in progress
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Thank you!
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