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Definition of Chern-Simons density
The CS density in odd d dimensions descends from the
Chern-Pontryagin (CP) density in even d + 1 dimensions

ϱ ≡ Ω
(d+1)
CP = εi1i2i3i4...id id+1

TrFi1i2Fi3i4 . . .Fid id+1
, (1)

which is gauge invariant by definition and is total divergence

Ω
(d+1)
CP = ∂iΩ

(d+1)
i , i = 1, 2, . . . , d + 1 (2)

The CS density is defined as the (d + 1)-th component of Ω
(d+1)
i

Ω
(d)
CS [Aµ,Fµν ]

def.
= (Ω

(d+1)
CP )i=d+1 , (3)

Since Ω
(d+1)
CP is a “curl” defined in terms of the totally

antisymmetric tensor εi1i2...id+1 , fixing one component leads to a

descent by one dimension, i .e., Ω
(d)
CS is a scalar in d dimensions,

expressed in terms of the gauge connection Aµ and the curvature
Fµν with coordinates xµ
Note that CS density (3) is not explicitly gauge variant.



Gauge transformation of CS density (infinitesimal)

While Ω
(d)
CS is not explicitly gauge variant it is effectively gauge

variant: It is gauge invariant up to a total divergence

Consider an infinitesimal gauge transformation

Ω
(d+1)
i

g→ Ω
(d+1)
i + δΩ

(d+1)
i . (4)

Since ϱ = ∂iΩ
(d+1)
i is gauge invariant, i .e., δϱ = 0, it follows that

δ(∂iΩ
(d+1)
i ) = 0 ⇒ ∂i (δΩ

(d+1)
i ) = 0 (5)

δΩ
(d+1)
i can formally be expressed as

δΩ
(d+1)
i = εijk1k2...kd−1

∂jΛk1k2...kd−1
, (6)

where Λk1k2...kd−1
[Ai ,Fij ] is a totally antisymmetric tensor.



From the definition (3) of the CS density, (6) implies the following
infinitesimal transformation of the CS density

δΩ
(d)
CS = δΩ

(d+1)
i=d+1 = ε(d+1)µν1ν2...νd−1

∂µVν1ν2...νd−1
(7)

defined on the space with the d-dimensional coordinates xµ.

It follows from (7) that under an infinitesimal gauge

transformation g(xµ), the CS density Ω
(d)
CS transforms as

Ω
(d)
CS

g→ Ω
(d)
CS + εµν1ν2...νd−1

∂µVν1ν2...νd−1
, (8)

meaning that the CS density is gauge invariant up to a total
divergence.

One concludes that the action of Ω
(d)
CS , namely its volume integral∫

ddx Ω
(d)
CS

g→
∫

ddx Ω
(d)
CS

remains invariant under the action of g , resulting in gauge
invariant Euler-Lagrange equations.



Examples of (usual) CS densities
For d = 3 and d = 5,

Ω
(1)
CS = εµνλTrAλ

(
Fµν −

2

3
FiFj

)
.

Ω
(2)
CS = TrA ∧

(
F ∧ F − F ∧ A ∧ A+

2

5
A ∧ A ∧ A ∧ A

)
.

and for d = 7

Ω
(3)
CS = TrA ∧

(
F ∧ F ∧ F − 4

5
F ∧ F ∧ A ∧ A− 2

5
F ∧ A ∧ F ∧ A

+
4

5
F ∧ A ∧ A ∧ A ∧ A− 8

35
A ∧ A ∧ A ∧ A ∧ A ∧ A

)
,

Ω̃
(3)
CS = TrA ∧

(
F − 2

3
A ∧ A

)
· (TrF ∧ F )

Ω̃
(3)
CS corresponding to double trace definition of CP density



Gauge transformation of CS density (global)

As shown above in all odd dimensions CS densities transform as

ΩCP → ΩCP +∇ ·Ω

In d = 3 and 5, such explicit expressions for global gauge
transformations featuring the element αµ = ∂µg g−1 of the gauge
group element g(x) are

Ω
(2)
CS → Ω̃

(2)
CS = Ω

(2)
CS −

2

3
ελµνTrαλαµαν − 2ελµν ∂λTrαµ Aν

Ω
(3)
CS → Ω̃

(3)
CS = Ω

(3)
CS −

2

5
ελµνρσTrαλαµαναρασ

+2 ελµνρσ ∂λTrαµ

[
Aν

(
Fρσ − 1

2
AρAσ

)
+

(
Fρσ − 1

2
AρAσ

)
Aν

−1

2
Aν αρ Aσ − αν αρ Aσ

]
in which αµ can be encoded with a “winding number”.



Higgs–Chern-Pontryagin (HCP) densities

The n-th Chern-Pontryagin (CP) density in 2n dimensions is

C(n)[F ] = ∂IΩ
(n)
I [A,F ] , I = 1, 2, . . . , 2n

Subjecting it to descent to D residual residual dimensions over a
compact coset co-dimension K 2n−D , its volume integral (up to the
“angular volume” of K 2n−D)∫

IRD×K2n−D

C(n) ≃
∫
IRD

∂iΩ
(n,D)
i [F ,Φ] odd D (9)

≃
∫
IRD

∂iΩ
(n,D)
i [A,F ,Φ] even D (10)

The integrand in (9)-(10) is a total divergence in the residual
space IRD with i = 1, 2, . . . ,D.
The residual gauge group and the rank of the scalar (Higgs) field
Φ depend on the choice of K 2n−D .



The notations in (9) and (10) imply that Ω
(n,D)
i are gauge

invariant and gauge variant, respectively for odd and even D.

In even residual dimensions D, ∂iΩ
(n,D)
i consists of the usual CP

density defined exclusively by the gauge field, plus a Higgs
dependant term.

Denoting the integrands in (9) and (10)

C(n,D)
HCP

def.
= ∂iΩ

(n,D)
i , i = 1, 2, . . . ,D (11)

gives the definition of the Higgs–Chern-Pontryagin (HCP) densities
on IRD , where now D can be both even and odd!

The HCP densities (11) are both gauge invariant and are
manifestly total-divergence

It is therefore possible to define the Higgs–Chern-Simons (HCS)
densities via the one-step descent described in the usual case.



Examples of Higgs–Chern-Pontryagin (HCP) densities

▶ n = 3 , D = 5

C(3,5)
HCP = εijklmTr Fij Fkl DmΦ = ∂mΩ

(3,5)
m ,

Ω
(3,5)
m = εijklm Tr Fij Fkl Φ

▶ n = 3 , D = 4

C(3,4)
HCP = εijkl Tr Γ5 (S FijFkl + 2DiΦDjΦFkl) = ∂iΩ

(3,4)
i

Ω
(3,4)
i = εijklTr Γ5

[
− 2η2Aj

(
Fkl −

2

3
AkAl

)
+

+(ΦDjΦ− DjΦΦ)Fkl

]
S = −

(
η21I+Φ2

)
, and Γ5 is symbolic



▶ n = 4 , D = 7

C(4,7)
HCP = εijklmnpTr Fij Fkl Fmn DpΦ = ∂pΩ

(4,7)
p

Ω
(4,7)
p = εijklmnp Tr Fij Fkl Fmn Φ

▶ n = 4 , D = 6

C(4,6)
HCP = εijklmn Tr Γ7

[
S FijFklFmn + 2FijFklDmΦDnΦ+

+FijDmΦFklDnΦ

]
= ∂iΩ

(4,6)
i

Ω
(4,6)
i = εijklmn Tr Γ7 Aj

[(
FklFmn − FklAmAn +

2

5
AkAlAmAn

)
+

+DjΦ (ΦFklFmn + FklΦFmn + FklFmnΦ)

]



The Higgs–Chern-Simons (HCS) densities

The HCS density in any odd or even dimension d = D − 1 follows
by setting the index i = D, thus achieving the one step descent
from the HCP to the HCS density, in each case.

The salient feature of all Ω
(n,D)
i for all even D is that the leading

term independent of the Higgs scalar Φ is the usual CP density in
that dimension. Thus the leading term in any odd dimension d is
the usual CS density in that dimension.

Since the HCP density is both gauge invariant and
total-divergence, it follows that the HCS density is gauge
invariant up to a total-divergence term, as in the usual CS case.



Skyrme–Chern-Simons (HCS) densities

The definition of CS and HCS densities was made by the one-step
descent from the respective CP and HCP densities

HCP densities descend from CP densities via (compact)
coset-space dimensional reduction: this results in the HCP being
both gauge invariant and total divergence, like the CP

In contrast to the gauged Higgs case

CP → HCP

such a procedure is absent in the gauged Skyrme case!

In the case of gauged Skyrme systems in D dimensions, a
prescription for defining a density which is both gauge invariant
and total divergence is needed



Skyrme Sigma models

▶ Skyrme sigma models are the O(D + 1) sigma models in all
D-dimensions

▶ They are defined in terms of a scalar field ϕa,
a = 1, 2, . . . ,D + 1 subject to the constraint

|ϕa|2 = 1

▶ The Rotation invariant density

ϱ
(D)
0 = εi1i2...iDε

a1a2...aDaD+1∂i1ϕ
a1 ∂i2ϕ

a2 ...∂iDϕ
aD ϕaD+1 (12)

is essentially total divergence in the sense that when
subjected to the variational principle,
with the constraint taken into account, it does not yield
non-trivial equations of motion



▶ In a parametrisation of ϕa that satisfies the sigma constraint

ϱ
(D)
0 becomes exlpicitly total divergence e.g ., using the

coordinates on SD , with f (1), f (2), . . . , f (D−1) being the
’polar’ fuction and g the ’azimuthal’ function,

1

D!
ϱ
(D)
0 = εi1i2...iD ∂i1f

(1) ∂i2f
(2) . . . , ∂iD−1

f (D−1) ∂iDg ·

· sinD−1 f (1) sinD−2 f (2) . . . sin f (D−1) sin g
def.
= ∇ · ω(D)

which is manifestly total divergence.
Note that there is an increasing number of choices in the
definition of ω, with increasing dimension.

▶ When the D-dimensional space is IRD , then ϱ
(D)
0 is a

winding number (up to the angular volume), and is a
topological charge density



Gauged Skyrme models
The prescription for gauging the Skyrme scalar O(D + 1) Skyrme
scalar in D dimensions is

Diϕ
α = ∂iϕ

α + (Aiϕ)
α , α = 1, 2, . . . ,D

Diϕ
D+1 = ∂iϕ

D+1

Ai being the SO(D) gauge connection

Aαβ
i = −Aβα

i .

This includes all possible contractions of SO(D) algebra.

The winding number density ϱ0 (12) is gauge variant and
total-divergence.

Replacing all partial derivatives in ϱ0 with covariant derivatives
results in the density

ϱ
(D)
G = εi1i2...iDε

a1a2...aDaD+1 Di1ϕ
a1 Di2ϕ

a2 . . . DiDϕ
aD ϕaD+1

which is gauge invariant but is not total-divergence!



The required density playing the roles of the CP and HCP densities
must like them be both gauge-invariant and total-divergence

To this end, one calcualtes the difference of ϱG and ϱ0

ϱ
(D)
G − ϱ

(D)
0 = ∇ ·Ω[A, ϕ]−W [F ,Dϕ] (13)

where Ω[A, ϕ] is gauge variant and W [F ,Dϕ] is gauge invariant

Note: In practice, this is done by removing a total-divergence in
(13) until a gauge-invariant quantity W is isolated in each case.

Then, rearranging the terms in (13) gives the required density

ϱ(D) def.
= ϱ

(D)
G +W [F ,Dϕ] (14)

= ϱ
(D)
0 +∇ ·Ω[A, ϕ] (15)

which is both gauge-invariant and total-divergence.



Skyrme–Chern-Pontryagin (SCP) densities

Let us flippantly call the density ϱ(D) defined by (14)-(15) as the
Skyrme–Chern-Pontryagin (SCP) density

Definition (14), expressed exclusively in terms of gauge invariant
quantities, is employed in stating Bogomoln’yi type inequalities,
thus qualifying it as an “energy density lower bound”

Definition (15) clearly expresses the departure of this “bound” from
the winding number, or “baryon number” due to the introduction
of the gauge field to the Skyrme system, and like the latter is a
total-divergence enabling the evaluation of it by a surface integral

Most importantly here, the definition (15) enables the passage to
the Skyrme–Chern-Simons (SCS) density by the one-step reduction
employed in passing from CP→CS and HCP→HCS



Examples of Skyrme–Chern-Pontryagin (SCP) densities
It is sufficient to present ϱ(D) in D dimensions for SO(D) gauging.

The gauge connection Aαβ
i in the algebra of SO(D) can then be

subjected to contractions to all possible subalgebras

In D = 2 with SO(2) gauging:

ϱ
(2)
SO(2) = ϱ

(2)
G + εijϕ

3Fij

= ϱ
(2)
0 + 2εij∂i (ϕ

3Aj)

In D = 3 with SO(3) gauging

ϱ
(3)
SO(3) = ϱ

(3)
G + εijkϕ

4εαββ
′
F ββ′

ij Dkϕ
α

= ϱ
(3)
0 + εijk∂kϕ

αεαββ
′
[
2Aββ′

i ∂jϕ
4 − ϕ4F ββ′

ij

]
In this case the SO(3) gauge connection can be contracted to
SO(2)



In the D = 4 with SO(4) gauging

ϱ
(4)
SO(4) = ϱ

(4)
G + εijklε

αβγδϕ5[3F γδ
kl Diϕ

αDjϕ
β +

1

4
(ϕ5)2Fαβ

ij F γδ
kl ]

= ϱ
(4)
0 +

3

2
εijklε

αα′ββ′
∂i{ϕ5(1−

1

3
(ϕ5)2)Aαα′

j [∂kA
ββ′

l +
2

3
(AkAl)

ββ′
]}

+6εijkl∂i

{
ϕ5εαβγγ

′
[ϕα(Ajϕ)

β − ∂kϕ
αϕβ](AkAl)

γγ′

−1

4
ϕ5(1− (ϕ5)2)εαα

′ββ′
Aαα′
j ∂kA

ββ′

l

}
In this case the SO(4) gauge connection can be contracted to
SO(2)× SO(2), SO(3) and SO(2)



For further illustration, list ϱ(3), ϱ(4) and ϱ(5) all three for SO(2)
gauging

ϱ
(3)
SO(2) = ϱ

(3)
G + εijkε

AB(Fijϕ
BDkϕ

A)

= ϱ
(3)
0 + εijkε

AB∂i (Aj ∂kϕ
A ϕB)

ϱ
(4)
SO(2) = ϱ

(4)
G + 2 εijklε

ABC
(
Fij ∂k ϕ

A ∂l ϕ
B ϕC

)
= ϱ

(4)
0 + 4 εijklε

ABC ∂i

(
Aj∂k ϕ

A ∂l ϕ
B ϕC

)

ϱ
(5)
SO(2) = ϱ

(5)
G +

1

2
Fij εijklmε

ABCD
(
∂kϕ

A∂lϕ
B∂mϕ

CϕD
)

= ϱ
(5)
0 + εijklmε

ABCD ∂i

[
Aj

(
∂kϕ

A∂lϕ
B∂mϕ

CϕD
)]



The Skyrme–Chern-Simons (SCS) densities

To define a SCS density in d = D − 1 dimensions the definition
(15) of the SCP density ϱ(D) is employed

To express this density as a total-divergence a constraint
compliant paramertisation of ϱ0 must be used, such that

ϱ0 = ∂iωi

ϱ(D) = ∂iω
(D)
i + ∂iΩi [A, ϕ] (16)

Finally the one-step descent resulting in the passage SCP→SCS is
achieved by setting the index i = D in (16)

Ω
(D−1)
SCS

def.
= ω

(D)
i=D +Ωi=D [A, ϕ]



In three dimensional Minkowski space, the SO(4) SCS density is

SO(4)Ω
(2,1)
SCS = ω

(4)
4 +

+
3

2
εµνλε

αα′ββ′{ϕ5(1− 1

3
(ϕ5)2)Aαα′

λ [∂µA
ββ′
ν +

2

3
(AµAν)

ββ′
]}

+6εµνλ∂i

{
ϕ5εαβγγ

′
[ϕαAλϕ

β − ∂λϕ
αϕβ](AµAν)

γγ′

−1

4
ϕ5(1− (ϕ5)2)εαα

′ββ′
Aαα′
λ ∂µA

ββ′
ν

}
and the SO(2) SCS density is

SO(2)Ω
(2,1)
SCS = ω

(4)
4 + εµνλε

ABC
(
Aλ∂µ ϕ

A ∂ν ϕ
B ϕC

)
In four dimensional Minkowski space, the SO(2) SCS density is

SO(2)Ω
(3,1)
SCS = ω

(5)
5 + εµντλε

ABCD
(
Aλ∂µ ϕ

A ∂ν ϕ
B ∂τ ϕ

C ϕD
)



For the SO(2)× SO(2) case, with the two Abelian fields Ai and Bi

and using the constraint compliant parametrisation

ϕa =

 ϕα

ϕA

ϕ5

 =

 sin f (xµ) sin g(xµ) n
α

sin f (xµ) cos g(xµ) m
A

cos f (xµ)


with

nα =

(
cosψ(xµ)
sinψ(xµ)

)
, mA =

(
cosχ(xµ)
sinχ(xµ)

)
,

ΩSCS = εµνλ
{
− 2

(
cos f − 1

3
cos3 f

)
(∂λ sin

2 g) ∂µψ ∂νχ

+
1

3
cos3 f (AλGµν + BλFµν)

−AµBν cos f
[
∂λ(sin

2 f sin2 g)− ∂λ(sin
2 f cos2 g)

]
+2 cos f

[
Aλ ∂µ(sin

2 f cos2 g) ∂νχ+ Bλ ∂µ(sin
2 f sin2 g) ∂νψ

]}
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Comments: time permitting

▶ Why Skyrme and not “Higgs” (i .e., symmetry breaking)?

▶ Can this prescription for constructing SCP be applied to
constructing HCP as an alternative to employing the method
of dimensional reduction described above?

Yes, but...

▶ Q: What is the motvation of employing SCS actions?

Ans.: Negative slopes of E vs.Qe and E vs.J and “baryon
number” dissipation in odd dimensions (only)

▶ Have such solitons been constructed?

Yes, with Francisco Navarro-Lerida and Eugen Radu




