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Definition of Chern-Simons density
The CS density in odd d dimensions descends from the
Chern-Pontryagin (CP) density in even d + 1 dimensions
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which is gauge invariant by definition and is total divergence
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The CS density is defined as the (d 4 1)-th component of Q
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Since digl) is a “curl” defined in terms of the totally
antisymmetric tensor £12:-/d+1  fixing one component leads to a
descent by one dimension, i.e., Q(Cdg is a scalar in d dimensions,
expressed in terms of the gauge connection A, and the curvature
F.. with coordinates x,,

Note that CS density (3) is not explicitly gauge variant.



Gauge transformation of CS density (infinitesimal)

While Q(Cds) is not explicitly gauge variant it is effectively gauge
variant: It is gauge invariant up to a total divergence

Consider an infinitesimal gauge transformation
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Since o = 9;{2; is gauge invariant, i.e., §o = 0, it follows that

sy =0 = gt =0 (5)

5(2,(-‘”1) can formally be expressed as
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where Ay i, .k, ,[Ai, Fij] is a totally antisymmetric tensor.



From the definition (3) of the CS density, (6) implies the following
infinitesimal transformation of the CS density
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defined on the space with the d-dimensional coordinates x,.

It follows from (7) that under an infinitesimal gauge
transformation g(x,), the CS density ngds) transforms as
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meaning that the CS density is gauge invariant up to a total
divergence.

One concludes that the action of QEJdS)' namely its volume integral
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remains invariant under the action of g, resulting in gauge
invariant Euler-Lagrange equations.



Examples of (usual) CS densities
For d =3 and d =5,
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and ford =7
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Q(C?; corresponding to double trace definition of CP density



Gauge transformation of CS density (global)

As shown above in all odd dimensions CS densities transform as
Qcp = Qep+ V- Q

In d = 3 and 5, such explicit expressions for global gauge
transformations featuring the element o, = 8ugg_1 of the gauge
group element g(x) are
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in which «, can be encoded with a “winding number”.



Higgs—Chern-Pontryagin (HCP) densities
The n-th Chern-Pontryagin (CP) density in 2n dimensions is
cF =0, A F, 1=1,2,...,2n
Subjecting it to descent to D residual residual dimensions over a

compact coset co-dimension K2"~P | its volume integral (up to the
“angular volume" of K27~D)
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The integrand in (9)-(10) is a total divergence in the residual
space RP with i =1,2,...,D.

The residual gauge group and the rank of the scalar (Higgs) field
¢ depend on the choice of K2~ P.



The notations in (9) and (10) imply that anp) are gauge
invariant and gauge variant, respectively for odd and even D.

In even residual dimensions D, 8;QEH’D) consists of the usual CP
density defined exclusively by the gauge field, plus a Higgs
dependant term.

Denoting the integrands in (9) and (10)
D) gonP) - i—12,....D (11)

gives the definition of the Higgs—Chern-Pontryagin (HCP) densities
on RP, where now D can be both even and odd!

The HCP densities (11) are both gauge invariant and are
manifestly total-divergence

It is therefore possible to define the Higgs—Chern-Simons (HCS)
densities via the one-step descent described in the usual case.



Examples of Higgs—Chern-Pontryagin (HCP) densities

»n=3, D=5

CI(—I3(7]5F)’ = 5,-J-k,mTr F’J Fk/ Dm(b — 8ng,5) ,
Qgs”i-)) = eijk/m Tr FIJ Fk/ q>

> n —= 3 , D — 4
Cgé‘ll:), = Ejjkl Trls (5 F,'J'Fk/ +2D;® qu) Fkl) _ 8,'953’4)

2
95374) =€ TrTs [ — 217 A <Fkl —3 AkAl) +

+(® Do - Do o) Fkl]

S=-— (nZ]I + ¢2) , and [ is symbolic



>n:4,D:

Cgé?’ = Eikimnp 1t Fij Fiy Fon Dp® = apQgh?)
QE’4,7) = Eijjkimnp Tr F,‘j Fui Fron ®

» n=4, D=6
Cgéﬁﬁ = Eijkimn TrT7 [S FijFxiFmn + 2 FijFiyDim® D, ® +
+F,-J-Dmd>Fk,D,,d>] = ;"9
Q0 — Eijkimn Tr 7 Aj[ (FkIan — FiuAmAn + EAkA,AmA,,> +

+Dj® (OFig Fonn + Fiy® i + Flemn(p)}



The Higgs—Chern-Simons (HCS) densities

The HCS density in any odd or even dimension d = D — 1 follows
by setting the index i = D, thus achieving the one step descent
from the HCP to the HCS density, in each case.

The salient feature of all QE"’D) for all even D is that the leading
term independent of the Higgs scalar @ is the usual CP density in
that dimension. Thus the leading term in any odd dimension d is
the usual CS density in that dimension.

Since the HCP density is both gauge invariant and
total-divergence, it follows that the HCS density is gauge
invariant up to a total-divergence term, as in the usual CS case.



Skyrme—Chern-Simons (HCS) densities

The definition of CS and HCS densities was made by the one-step
descent from the respective CP and HCP densities

HCP densities descend from CP densities via (compact)
coset-space dimensional reduction: this results in the HCP being
both gauge invariant and total divergence, like the CP

In contrast to the gauged Higgs case
CP — HCP

such a procedure is absent in the gauged Skyrme casel!

In the case of gauged Skyrme systems in D dimensions, a
prescription for defining a density which is both gauge invariant
and total divergence is needed



Skyrme Sigma models

» Skyrme sigma models are the O(D + 1) sigma models in all
D-dimensions

» They are defined in terms of a scalar field ¢?,
a=12,...,D+ 1 subject to the constraint

¢%* =1
» The Rotation invariant density
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is essentially total divergence in the sense that when
subjected to the variational principle,

with the constraint taken into account, it does not yield
non-trivial equations of motion




» In a parametrisation of ¢? that satisfies the sigma constraint

ggD) becomes exlpicitly total divergence e.g., using the
coordinates on SP, with f(1), (2 f(D-1) peing the
'polar’ fuction and g the 'azimuthal’ function,

1 o _
ﬁgg ) = €itr...ip 8,‘1 f(l) 6,-2 f(2) ey 8,'D71f(D 1) O;Dg .
- sinP7LF) inP=2£(2) | gin £(P-1) sing
def. . (D)

which is manifestly total divergence.
Note that there is an increasing number of choices in the
definition of w, with increasing dimension.

» When the D-dimensional space is R?, then QSD) is a

winding number (up to the angular volume), and is a
topological charge density




Gauged Skyrme models
The prescription for gauging the Skyrme scalar O(D + 1) Skyrme
scalar in D dimensions is
Di¢a = af¢a+(’4f¢)a ) a = 1727"
Di¢D+1 _ 8[¢D+1

D

*

A; being the SO(D) gauge connection
B _ B
AP = AP
This includes all possible contractions of SO(D) algebra.

The winding number density go (12) is gauge variant and
total-divergence.

Replacing all partial derivatives in gg with covariant derivatives
results in the density
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which is gauge invariant but is not total-divergence!



The required density playing the roles of the CP and HCP densities
must like them be both gauge-invariant and total-divergence

To this end, one calcualtes the difference of p¢ and gg
08 = o) = v - Q[A, ¢] - WIF, Dg] (13)
where Q[A, ¢] is gauge variant and W[F, D¢] is gauge invariant

Note: In practice, this is done by removing a total-divergence in
(13) until a gauge-invariant quantity W is isolated in each case.

Then, rearranging the terms in (13) gives the required density

o? = P+ WIF, Dyl (14)
= o))+ V-9 4] (15)

which is both gauge-invariant and total-divergence.



Skyrme—Chern-Pontryagin (SCP) densities

Let us flippantly call the density o(P) defined by (14)-(15) as the
Skyrme—Chern-Pontryagin (SCP) density

Definition (14), expressed exclusively in terms of gauge invariant
quantities, is employed in stating Bogomoln'yi type inequalities,
thus qualifying it as an “energy density lower bound”

Definition (15) clearly expresses the departure of this “bound” from
the winding number, or “baryon number” due to the introduction
of the gauge field to the Skyrme system, and like the latter is a

total-divergence enabling the evaluation of it by a surface integral

Most importantly here, the definition (15) enables the passage to
the Skyrme—Chern-Simons (SCS) density by the one-step reduction
employed in passing from CP—CS and HCP—HCS



Examples of Skyrme—Chern-Pontryagin (SCP) densities
It is sufficient to present o(P) in D dimensions for SO(D) gauging.

The gauge connection A?ﬁ in the algebra of SO(D) can then be
subjected to contractions to all possible subalgebras
In D = 2 with SO(2) gauging:
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In D = 3 with SO(3) gauging
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In this case the SO(3) gauge connection can be contracted to

S0(2)



In the D = 4 with SO(4) gauging
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In this case the SO(4) gauge connection can be contracted to

S0(2) x SO(2), SO(3) and SO(2)



For further illustration, list o(3), o*) and o(®) all three for SO(2)
gauging

92‘30)(2) = 9(63) + e (Fijo® Do)
= o 4 cueBoi(A; 0k ¢5)

9(52)(2) = ( T 2eje"PC (FU Ok ¢ 0y ¢ ¢C>

= Q(() ) + 48;jk/€AB 0 (Ajak (Z5A 0 QZ)B QZ)C)

1
(5) _ 0(5) ,_— EuklmgABCD <8k¢Aal¢Bamd)C¢D)

250(2)
= @é)+sak/meABCDé‘ (45 (00 016F 0o 6P|



The Skyrme—Chern-Simons (SCS) densities

To define a SCS density in d = D — 1 dimensions the definition
(15) of the SCP density o(P) is employed

To express this density as a total-divergence a constraint
compliant paramertisation of gy must be used, such that

00 = Jiw;
o®) = 9:P) + 9,Qi[A, ¢] (16)
Finally the one-step descent resulting in the passage SCP—SCS is
achieved by setting the index i = D in (16)
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In three dimensional Minkowski space, the SO(4) SCS density is
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and the SO(2) SCS density is
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In four dimensional Minkowski space, the SO(2) SCS density is
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For the SO(2) x SO(2) case, with the two Abelian fields A; and B;
and using the constraint compliant parametrisation
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Comments: time permitting

» Why Skyrme and not “Higgs" (i.e., symmetry breaking)?

» Can this prescription for constructing SCP be applied to
constructing HCP as an alternative to employing the method
of dimensional reduction described above?

Yes, but...
» Q: What is the motvation of employing SCS actions?

Ans.: Negative slopes of E vs.Q and E vs.J and “baryon
number” dissipation in odd dimensions (only)

» Have such solitons been constructed?

Yes, with Francisco Navarro-Lerida and Eugen Radu
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